- 博客(7)
- 收藏
- 关注
原创 [ THUNLP-MT (7/10) ] Neural Machine Translation by Jointly Learning to Align and Translate | 注意力机制
被引用 6824 次,又是一篇高引用论文。也是紧跟在seq2seq模型原论文,列表中 [THUNLP-MT (6/10)],后面的一篇论文。本文的重点即为注意力机制,是现今NLP领域中非常重要的机制。
2019-08-11 22:47:42 5702
原创 [ THUNLP-MT (6/10) ] Sequence to Sequence Learning with Neural Networks | seq2seq模型
本文介绍NLP领域重要的seq2seq模型,包含了模型的基本原理和 Sutskever 等人研究工作中的相关实验。有不对的地方欢迎指出,一起学习呀。明天可就是520了。
2019-05-19 20:39:42 412
原创 [ THUNLP-MT (2/10) ] BLEU: a Method for Automatic Evaluation of Machine Translation | NIST
本文讨论BLEU和NIST评价指标的主要原理。原论文由IBM发表于ACL'02,是老生常谈的一篇论文了。BLEU指标如今经常在机器翻译任务的评价中使用。 (被引用 8924 次。)此外,本文还讨论BLEU的变种,NIST评价指标。
2019-05-16 23:46:24 408
原创 [ THUNLP-MT(9/10) ] Neural Machine Translation of Rare Words with Subword Units | Byte Pair Encoding
Sennrich在ACL'2016发表的论文,主要研究神经机器翻译模型中的未登录词问题,提出了Byte Pair Encoding方法,同时该方法也解决了词表过大的问题。本文在介绍Sennrich的研究工作的基础上,也介绍了中文对于未登录词的相关方法。
2019-05-15 15:13:31 941
原创 [ THUNLP-MT (4/10) ] Minimum Error Rate Training in Statistical Machine Translation | 最小错误率训练 + SMT
本文介绍最小错误率训练方法,主要是笔者对于论文的理解,希望对你有帮助。该论文是THUNLP-MT推荐的机器翻译领域必读的十篇论文之一。
2019-05-08 23:12:53 577 1
原创 [ THUNLP-MT (10/10) ] Attention Is All You Need 之 主要原理 X 工具介绍 X 变种 | Transformer模型 + 注意力机制 + 谷歌
本文主要分为三部分:Transformer模型主要原理,模型的变种介绍和相关工具的介绍。主要为入门小白提供更好的学习体验,欢迎讨论呀。该论文由Vaswani在2017年发布,他已经将近两岁了呢,针对该模型提出的应用和变种层出不穷。此外,该论文也是THUNLP-MT推荐的必读十篇论文之一哦!
2019-05-07 21:44:48 930
原创 Levenshtein distance:算法整理 与 编辑操作推断 【回朔 + Python】
本文讨论通过Levenshtein distance和单源最短路径搜索算法来推断两个字符串(句子)之间最佳的编辑操作序列。使用到的知识有:动态规划 和 单源最短路径搜索算法。Levenshtein distance(也叫做编辑距离,Edit distance)由Vladimir Levenshtein在1965年提出,主要用来比较两个字符串之间的编辑距离,可以延伸到衡量两个字符串之间的相似度...
2019-05-01 23:55:00 1195 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人