Levenshtein distance:算法整理 与 编辑操作推断 【回朔 + Python】

本文讨论通过Levenshtein distance和单源最短路径搜索算法来推断两个字符串(句子)之间最佳的编辑操作序列。使用到的知识有:动态规划 和 单源最短路径搜索算法。

Levenshtein distance(也叫做编辑距离,Edit distance)由Vladimir Levenshtein在1965年提出,主要用来比较两个字符串之间的编辑距离,可以延伸到衡量两个字符串之间的相似度。


目录

动态规划的思想

进一步 :Levenshtein distance 算法之优化

最短路径搜索 Bellman–Ford && Dijkstra

例子:语法错误修正的参考结果

主要应用场景

参考资料



动态规划的思想

对于两个字符串 s, t , s[1..i] 表示字符串 s 的子串。 d[ i , j ] 用来表示表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,它可以使用一个二维数组保存。 
    

  • 在 i=0 时,也就是说字符串 s 为空。那么对应的 d[0,j] 就是 增加 j 个字符,使得字符串 s 转化为字符串 t;
  • 在 j=0 时,也就是说字符串  t为空。那么对应的 d[i,0] 就是 减少 i 个字符,使得字符串 s 转化为字符串 t;
  • 即 d[0,j]=j , d[i,0]=i

考虑一般情况,即得到将 s[1..i] 经过最少次数的增加,删除,或者替换编辑操作转变为 t[1..j] 的操作个数,那么就必须在之前的步骤中以最少的次数来进行编辑操作,使得当前的字符串只需要再做一次操作或者不做就可以完成转换。
    
之前的步骤可以分为三种情况:

  1. 在 k 个编辑操作内将 s[1…i] 转换为 t[1…j-1]
  2. 在 k 个编辑操作内将 s[1..i-1] 转换为 t[1..j]
  3. 在 k 个编辑操作内将 s[1…i-1] 转换为 t [1…j-1]

对于第1种情况,只需要在最后将 t[j] 加上 s[1..i] 就完成了匹配,这样总共就需要 k+1 个操作。
对于第2种情况,只需要在最后将 s[i] 移除,然后再做这 k 个操作,所以总共需要 k+1 个操作。
对于第3种情况,只需要在最后将 s[i] 替换为 t[j],使得满足 s[1..i] == t[1..j] ,这样总共也需要 k+1个操作。

而如果在第3种情况下,s[i] 刚好等于 t[j],那我们就可以仅仅使用 k 个操作就完成这个过程。最后,为了保证得到的操作次数总是最少的,需要从上面三种情况中选个数最少的一种编辑操作,作为当前将 s[1..i ] 转换为 t[1..j] 所需要的操作次数。

可以整理为如下公式:

具体的实现:通过动态规划建立 distance矩阵 和 backpointer字典,代码如下。

# reference: m2scorer
# 时间复杂度 O(len(s1)*len(s2))
def levenshtein_matrix(s1, s2, cost_ins=1, cost_del=1, cost_sub=2):
    if len(second) == 0 or len(second) == 0:
        return len(first) + len(second)

    s1_length = len(s1) + 1
    s2_length = len(s2) + 1

    # 初始化
    distance_matrix = [[None] * s2_length for x in range(s1_length)]
    backpointers = {}
    distance_matrix[0][0] = 0
    for i in range(1, s1_length):
        distance_matrix[i][0] = i
        edit = ("del", i-1, i, s1[i-1], '', 0)
        backpointers[(i, 0)] = [((i-1,0), edit)]
    for j in range(1, s2_length):
        distance_matrix[0][j]=j
        edit = ("ins", 0, 0, '', s2[j-1], 0) # always insert from the beginning
        #edit = ("ins", j-1, j-1, '', s2[j-1], 0)
        backpointers[(0, j)] = [((0,j-1), edit)]

    # 动态规划
    for i in range(1, s1_length):
        for j in range(1, s2_length):
            deletion = distance_matrix[i-1][j] + cost_del
            insertion = distance_matrix[i][j-1] + cost_ins
            if s1[i-1] == s2[j-1]:
                substitution = distance_matrix[i-1][j-1]
            else:
                substitution = distance_matrix[i-1][j-1] + cost_sub
            if substitution == min(substitution, deletion, insertion):
                distance_matrix[i][j] = substitution
                if s1[i-1] != s2[j-1]:
                    edit = ("sub", i-1, i, s1[i-1], s2[j-1], 0)
                else:
                    edit = ("noop", i-1, i, s1[i-1], s2[j-1], 1)
                try:
                    backpointers[(i, j)].append(((i-1,j-1), edit))
                except KeyError:
                    backpointers[(i, j)] = [((i-1,j-1), edit)]
            if deletion == min(substitution, deletion, insertion):
                distance_matrix[i][j] = deletion
                edit = ("del", i-1, i, s1[i-1], '', 0)
                try:
                    backpointers[(i, j)].append(((i-1,j), edit))
                except KeyError:
                    backpointers[(i, j)] = [((i-1,j), edit)]
            if insertion == min(substitution, deletion, insertion):
                distance_matrix[i][j] = insertion
                edit = ("ins", i, i, '', s2[j-1], 0)
                try:
                    backpointers[(i, j)].append(((i,j-1), edit))
                except KeyError:
                    backpointers[(i, j)] = [((i,j-1), edit)]
    return (distance_matrix, backpointers)

进一步 :Levenshtein distance 算法之优化

原本的时间复杂度为O(len(s1)*len(s2),空间复杂度O(len(s1)*len(s2),太大了!

降低空间复杂度  O(2∗max{M, N})  BlackStorm

降低时间复杂度  O(n +d^2)

最短路径搜索 Bellman–Ford && Dijkstra

Bellman–Ford算法  O(VE) | Dijkstra 算法  O(ElogV)

这部分需要在 backpointer字典 构成的有向图中找到从源点 (0,0) 到 终点 (len(s),len(t)) 的最短路径。并且考虑效率,和未来如果有金标的编辑操作需要用到负权重的边,这里选择使用两种最短路径搜索算法供选择。分别是支持负权重边的 Bellman–Ford算法,和效率较高的 Dijkstra算法 。为了得到编辑操作序列,在两个算法的最后从结尾节点往原节点遍历。

# 时间复杂度:O(VE) ; 空间复杂度:O(E)
def bellmanFord(V, E, dist, edits):

    thisdist = {}
    path = {}

    for v in V:
        thisdist[v] = float('inf')
    thisdist[(0,0)] = 0 # start = (0,0)

    for i in range(len(V)-1): 
        for edge in E:
            v = edge[0]
            w = edge[1]
            if thisdist[v] + dist[edge] < thisdist[w]:
                thisdist[w] = thisdist[v] + dist[edge]
                path[w] = v
    
    v = sorted(V)[-1] # 从最后一个节点开始回朔
    editSeq = []
    while True:
        try:
            w = path[v]
        except KeyError:
            break
        edit = edits[(w,v)]
        if edit[0] != 'noop':
            editSeq.append((edit[0],edit[1], edit[2], edit[3], edit[4]))
        v = w
    return editSeq

# 使用最小堆,时间复杂度:O(ElogV) ; 空间复杂度:O(V)
# 使用了 最小堆(heap)数据结构,父节点用于小于节点
# heappush
# heappop
def dijkstra(V, E, dist, edits)):
    """
    # 原点开始 (0,0)
    """

    E1 = defaultdict(list)
    for e in E:
        E1[e[0]].apppend(e[1])

    start=(0,0)
    path = {}
    distance = {}
    for v in V:
        distance[v] = float('inf')
    distance[(0,0)] = 0   

    # 标记是否访问过
    visited = dict((key,False) for key in G)   

    # 存放排序后的 原点 到 各个节点的 距离 【 vertex-based 】
    pq = [] 
    my_hp.heappush(pq, [distance[start], start])
 
    # 记录到每个点的路径
    path = dict((vertex,[start]) for vertex in V)   

    while len(pq)>0: 

        # pop 头结点
        v_distance, v = my_hp.heappop(pq) # O( V * log(V) )

        if visited[v] == True:
            continue
        visited[v] = True

        # 到v的最短路径
        p = path[v].copy()   

        for node in E1[v]: # 与v直接相连的点

            new_distance = distance[v] + dist.get((v, node), float('inf'))

            # O( E * log(V) )
            # 对应算法导论中的 RELAX 方法
            # 如果与 node 直接相连的点,通过 node 到起始点的距离小于 distance字典中对应的值,则用小的值替换
            if new_distance < distance[node] and (not visited[node]): # O(E)
                
                distance[node] = new_distance           

                my_hp.heappush(pq,[distance[node],node]) # push O(logV)

                # 更新node的路径
                # temp = p.copy()
                # temp.append(node)   
                # path[node] = temp   
                path[node] = v

    v = sorted(V)[-1] # 从最后一个节点开始回朔
    editSeq = []
    while True:
        try:
            w = path[v]
        except KeyError:
            break
        edit = edits[(w,v)]
        if edit[0] != 'noop':
            editSeq.append((edit[0],edit[1], edit[2], edit[3], edit[4]))
        v = w
    return editSeq

 



例子:语法错误修正的参考结果

举例而言,对于两个句子,

(1) “你不觉得中文很好趣的说”
(2) “我觉得中文很有趣”

需要将句子(1)修正为句子(2),它们之间的编辑操作序列可以通过如下步骤得到:

 1. 通过动态规划建立 distance矩阵和 backpointer矩阵
矩阵如下面两图。其中,图一是 distance矩阵,图二是 部分 backpointer字典的输出,其中curr表示当前节点,before表示前一个节点,即构成了一个边,并且记录了原字符串需要进行的编辑操作类型和位置。实现方式是,通过两个回圈遍历字符串,比较前面提到的3种情况来得到两个矩阵。其中,backpointer矩阵包含了上一个节点,即构成了一个图。

   

 

2. 使用 Bellman–Ford算法来搜寻 backpointer字典 构成的图,建立编辑距离图和编辑操作图。
    


最后,通过回朔得到输出结果:


主要应用场景

  • 语法错误修正

使用单源最短路径算法的回朔输出结果可以作为语法错误修正的参考结果。

  • 拼字纠错

1. 命令行和搜索引擎等的关键词错误纠正(Did you mean...?)是如何实现的?(知乎)

陈运文 提到:在中文中由于使用拼音输入法作为输入,往往不会出现错字的情况;然而,中文的语义单元多由两个或以上的汉字组成,如此就有可能会产生别字,即拼字错误。具体的方法有两种:编辑距离 和 噪声信道模型 ( Noisy channel model )。

2. liuhuanyong/QueryCorrection 基于拼音相似度与编辑距离的查询纠错 ( github 开源 )

  • 字符串相似度计算

1. Properties of Levenshtein, N-Gram, cosine and Jaccard distance coefficients - in sentence matching (stack exchange)

ttnphns 提到:Levenshtein is a specific form of "alignment" distance, and it compares sequences of elements, i.e. both content of elements and their order. Cosine and Jaccard compare only content (element is, say, a letter). Bi-gram distance compares content of elements, but an element is defined specifically as 2-letter chunk. – ttnphns Jun 21 '16 at 9:52

具体而言,Levenshtein distance 算法既衡量了两字符串之间的内容差异,又考虑了其子串之间的位置关系。而 Cosine similarity 和 Jaccard similarity 则只衡量了两字符串之间的内容差异。

2. Compare similarity algorithms (stackoverflow)

MrGomez 提到:不同的相似度度量解决了不同的问题,而被用在不同的场景中。并且也提到了,距离相似度需要满足 三角不等式

3. String similarity -> Levenshtein distance (stackoverflow)

4. Similarity String Comparison in Java  (stackoverflow)

  • 数据对齐 

数据对齐是对字符串相似度计算方法的应用。具体的场景有query查询。

参考资料

  1. 经典算法研究系列:二、Dijkstra 算法初探  v_JULY_v
  2. “生动”讲解——深度优先搜索与广度优先搜索
  3. heapq — Heap queue algorithm 
  4. heapq.md 使用方式
  5. 字符串编辑距离(Levenshtein距离)算法
  6. Levenshtein Distance and Text Similarity in Python
  7. 数据对齐-编辑距离算法详解(Levenshtein distance)
  8. Levenshtein Distance: Inferring the edit operations from the matrix
     


 

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值