JdbcUtils
码龄9年
关注
提问 私信
  • 博客:5,390,283
    社区:1,383
    问答:813
    5,392,479
    总访问量
  • 267
    原创
  • 2,295,658
    排名
  • 723
    粉丝

个人简介:生活不止眼前的苟且,还有诗和远方。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2015-12-16
博客简介:

.... 永远年轻,永远热泪盈眶

查看详细资料
个人成就
  • 获得680次点赞
  • 内容获得300次评论
  • 获得2,438次收藏
  • 代码片获得403次分享
创作历程
  • 1篇
    2023年
  • 2篇
    2022年
  • 1篇
    2021年
  • 11篇
    2020年
  • 24篇
    2019年
  • 306篇
    2018年
成就勋章
TA的专栏
  • 架构之路
    47篇
  • JVM & JDK
    51篇
  • 问题&优化归集
    13篇
  • SpringBoot
    24篇
  • SpringCloud
    10篇
  • Dubbo
    10篇
  • 算法
    12篇
  • 设计模式
    10篇
  • Netty
    2篇
  • Redis
    2篇
  • Zookeeper
    3篇
  • SQL优化
    5篇
  • sentry
    1篇
  • Mysql
    41篇
  • Oracle
    54篇
  • Spring
    6篇
  • SpringMvc
    5篇
  • Mybatis
    11篇
  • Hibernate
    2篇
  • SpringData JPA
    1篇
  • MQ
    4篇
  • MongoDB
    1篇
  • Maven
    1篇
  • IntellliJ   IDEA
    9篇
  • eclipse
    3篇
  • log4j
    3篇
  • PowerDesigner
    2篇
  • 运维(部署、构建)
    11篇
  • Docker
    2篇
  • CXF  WebService
    2篇
  • Linux
    30篇
  • Jenkins
    3篇
  • Nginx
    11篇
  • Git
    4篇
  • Echarts
    1篇
  • JavaScript
    7篇
  • EasyUI
    3篇
  • Shiro
    2篇
  • Thymeleaf
    3篇
  • POI
    1篇
  • 机器学习
    1篇
  • Experience
    9篇
  • LifeStyle
    2篇
  • XStream
    1篇
  • 代理
    8篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 大数据
    mysqlredis
  • 后端
    spring架构
  • 搜索
    elasticsearch
  • 服务器
    linux
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ClickHouse入门及适用场景(Chat-GPT产物)

此篇文章是由chat-GPT(gpt-4)对话而来的产物(不得不感慨AI确实带来了很多便利)。
原创
发布博客 2023.04.03 ·
1636 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

4S店提车注意事项

4S店提车注意事项。
原创
发布博客 2022.12.02 ·
514 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

arthas实用工具梳理篇

arthas实用梳理篇。
原创
发布博客 2022.09.29 ·
1229 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

整理一下:遇到的Java服务故障问题及排查方案

常见问题 1:CPU 利用率高问题CPU 使用率是衡量系统繁忙程度的重要指标,一般情况下单纯的 CPU 高并没有问题,它代表系统正在不断的处理我们的任务,但是如果 CPU 过高,导致任务处理不过来,这个是非常危险需要关注的。CPU 使用率的安全值没有一个标准值,取决于你的系统是计算密集型还是 IO 密集型,一般计算密集型应用 CPU 使用率偏高 load 偏低,IO 密集型相反。问题原因:1、频繁 FullGC/YongGC如何排查:查看 gc 日志;jstat -gcutil pid 查看
原创
发布博客 2021.03.28 ·
1281 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

IO、NIO、Netty分别实现服务端与客户端通信

简化下场景:客户端每隔两秒发送一个带有时间戳的 “hello world” 给服务端,服务端收到之后打印。IO编程IO服务端:public class IOServer { public static void main(String[] args) throws Exception { ServerSocket serverSocket = new ServerSocket(8000); // (1) 接收新连接线程 new Thread(
原创
发布博客 2020.08.27 ·
4068 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

SpringBoot源码部分阅读总结

关于启动类注解@SpringBootApplication@Target(ElementType.TYPE)@Retention(RetentionPolicy.RUNTIME)@Documented@Inherited@SpringBootConfiguration@EnableAutoConfiguration@ComponentScan(excludeFilters = { @Filter(type = FilterType.CUSTOM, classes = TypeExcludeF
原创
发布博客 2020.08.26 ·
363 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

重温Mysql及部分原理挖掘

01 | 基础架构:一条SQL查询语句是如何执行的?大体来说,MySQL 可以分为 Server 层和存储引擎层两部分。Server 层包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。存储引擎层负责数据的存储和提取。其架构模式是插件...
原创
发布博客 2020.08.21 ·
18479 阅读 ·
4 点赞 ·
0 评论 ·
3 收藏

使用 MAT 排查分析 OOM 问题案例

MAT相信有一定经验的开发者多少都会在生产环境上碰到过内存溢出(OOM)的问题吧。对于排查 OOM 问题、分析程序堆内存使用情况,最好的方式就是分析堆转储。Java 的 OutOfMemoryError 是比较严重的问题,需要分析出根因,所以对生产应用一般都会这样设置 JVM 参数,方便发生 OOM 时进行堆转储:-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/xxx/xxx关于分析堆存储文件的话,推荐使用Eclipse 的 Memory Ana
原创
发布博客 2020.08.13 ·
2833 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Redis配置文件redis.conf中常用配置详解

什么是Redis?Remote Dictionary Server(Redis) 是一个高性能的(key/value)分布式内存数据库,基于内存运行,并支持持久化的NoSQL数据库,它也通常被称为数据结构服务器,因为值(value)可以是 字符串(String), 哈希(Map), 列表(list), 集合(sets) 和 有序集合(sorted sets)等类型。与传统数据库不同的是 Redis 的数据是存在内存中的,所以存写速度非常快,因此 Redis 被广泛应用于缓存方向。Redis为分布式缓存,
原创
发布博客 2020.08.06 ·
386 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

时间、空间复杂度分析

时间复杂度时间复杂度表示算法的执行时间与数据规模之间的增长关系。虽然代码千差万别,但是常见的复杂度量级并不多。我稍微总结了一下,这些复杂度量级几乎涵盖了你今后可以接触的所有代码的复杂度量级。O(1)首先你必须明确一个概念,O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。 int i ...
原创
发布博客 2020.04.15 ·
337 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

MQ的常用场景 && 最佳实践

RocketMQ消息队列 RocketMQ 版是阿里云基于 Apache RocketMQ 构建的低延迟、高并发、高可用、高可靠的分布式消息中间件。消息队列 RocketMQ 版既可为分布式应用系统提供异步解耦和削峰填谷的能 力,同时也具备互联网应用所需的海量消息堆积、高吞吐、可靠重试等特性。建议统一消息格式统一消息格式,message由两部分组成id:由生产者生成,每次不重复,...
原创
发布博客 2020.04.01 ·
33512 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

HashMap引发死链问题(HashMap、ConcurrentHashMap原理解析)

事故背景一个CPU使用率飙升至100%的线上故障,原因是在并发情况下使用HashMap导致死循环。当cpu使用率100%时,查看堆栈,发现程序都卡在了HashMap.get()这个方法上了,重启程序后问题消失。但是过段时间又会来。HashMap结构HashMap 是我们经常会用到的集合类,JDK 1.7 之前底层使用了数组加链表的组合结构,如下图所示:HashMap通常会用一个指针数组...
原创
发布博客 2020.03.31 ·
4612 阅读 ·
12 点赞 ·
7 评论 ·
32 收藏

消息队列 RocketMQ原理和使用整理

背景由于公司之前使用的队列中间件是kafka,近期变更为使用阿里的RocketMQ,所以对RocketMQ进行一下简单的知识整理。后续研究其内部原理后,再来一篇深入理解。说明消息队列 RocketMQ 版是阿里云基于 Apache RocketMQ 构建的低延迟、高并发、高可用、高可靠的分布式消息中间件。消息队列 RocketMQ 版既可为分布式应用系统提供异步解耦和削峰填谷的能力,同时也具...
原创
发布博客 2020.03.23 ·
3804 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

记一次通过优化日志解决高并发服务性能瓶颈问题

事故发现服务在生产环境中,由于同一时间段请求量过大,导致服务响应速度急剧下降。甚至会出现拒绝服务的问题,第一时间想到是机器性能问题,无法满足并发如此大的场景,需要进行扩容或者服务限流。经过扩容之后平稳了一个多月之后,又一次大量请求打进来的时候出现了此问题。这时才意识到开始从各个角度去排查问题。事故排查过程一个系统的吞吐量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。...
原创
发布博客 2020.03.18 ·
36722 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

Java动态代理相关简述

一、概念:Java动态代理的优势是实现无侵入式的代码扩展,也就是方法的增强;让你可以在不用修改源码的情况下,增强一些方法;在方法的前后你可以做你任何想做的事情(如Spring AOP、cglib等)。代理模式:为其他对象提供一种代理以控制对这个对象的访问。在某些情况下,一个对象不适合或者不能直接引用另一个对象,而代理对象可以在客户端和目标对象之间起到中介的作用。(个人理解就是对调用目标的一种...
原创
发布博客 2020.01.20 ·
437 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Sentry基本原理

官方文档:sentry官网Sentry基本介绍Sentry 是一个实时事件日志记录和汇集的平台。其专注于错误监控以及提取一切事后处理所需信息而不依赖于麻烦的用户反馈。它分为客户端和服务端,客户端(目前客户端有Python, PHP,C#, Ruby等多种语言)就嵌入在你的应用程序中间,程序出现异常就向服务端发送消息,服务端将消息记录到数据库中并提供一个web页方便查看。Sentry由pyth...
原创
发布博客 2019.11.08 ·
6283 阅读 ·
0 点赞 ·
0 评论 ·
15 收藏

Java位运算符

一、Java中所支持的位运算符一共有7个符号说明&按位与。当两位同时为1时才返回1。|按位或。只要有一位为1即可返回1。~按位非(取反)。单目运算符,将操作数的每个位(包括符号位)全部取反。^“异或”运算。当两位相同时返回0,不同时返回1。<<左移运算符。>>右移运算符。>>>...
原创
发布博客 2019.09.17 ·
391 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

KMP、BM、Sunday、Horspool、strstr 字符串匹配算法介绍和性能比较

文章转自:https://blog.csdn.net/qq_33515733/article/details/81163135
转载
发布博客 2019.08.26 ·
1107 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

kafka架构分析和配置使用整理

一、软件简介Apache Kafka是开源的分布式流处理平台,也是高吞吐量的分布式跨平台订阅消息系统,主要包含Broker服务器、Topic消息类别、Partition物理分区、Producer生产者、Consumer消费者、Consumer Group消费组部分。二、架构图总结:•Broker : Kafka消息服务器,消息中心。一个Broker可以容纳多个Topic。•Prod...
原创
发布博客 2019.06.21 ·
761 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

activemq官方安装包

发布资源 2019.06.13 ·
zip
加载更多