###### poj　3268　单向最短路，来回路程～
Silver Cow Party
 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17432 Accepted: 7993

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti(1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

Source

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define N 1100
int n,m,x;
int dis[N],disf[N],maps[N][N],vis[N];

void init(int n)
{
for(int i=0;i<=n;i++)
for(int j=0;j<=n;j++)
maps[i][j]=(i==j)?0:INF;
}

int dijkstra()
{
int i,j,index,Min;
for(i=1;i<=n;i++)
{
dis[i]=maps[i][x];  ///i到x的最短路~
disf[i]=maps[x][i];  ///x返回i的最短路~
vis[i]=0;
}

for(i=1;i<=n;i++)
{
Min=INF;
for(j=1;j<=n;j++)
{
if(!vis[j] && Min>dis[j])
{
Min=dis[j];
index=j;
}
}
vis[index]=1;
for(j=1;j<=n;j++)
{
if(!vis[j] && dis[j]>Min+maps[j][index])
dis[j]=Min+maps[j][index];
}
}

memset(vis,0,sizeof(vis));
for(i=1;i<=n;i++)
{
Min=INF;
for(j=1;j<=n;j++)
{
if(!vis[j] && Min>disf[j])
{
Min=disf[j];
index=j;
}
}
vis[index]=1;
for(j=1;j<=n;j++)
{
if(!vis[j] && disf[j]>Min+maps[index][j])
disf[j]=Min+maps[index][j];
}
}

int Max=-1;
for(i=1;i<=n;i++)
{
if(Max<dis[i]+disf[i])
Max=dis[i]+disf[i];
}
return Max;
}

int main()
{
int i,a,b,c,ans;
while(scanf("%d%d%d",&n,&m,&x)!=EOF)
{
init(n);
for(i=0;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
maps[a][b]=c;
}
ans=dijkstra();
printf("%d\n",ans);
}
return 0;
}

#### 最短路的四种算法总结

2017-04-19 21:28:46

#### 昂贵的聘礼 1062 （最短路（单向）+建图）

2015-08-18 18:00:55

#### POJ3268 牛的最长来回时间（单源最短路径）

2012-12-05 21:42:33

#### poj3268 - Silver Cow Party

2012-08-16 10:20:10

#### POJ-3268-最短路(dijkstra算法)

2014-07-24 15:53:20

#### POJ 3268 Silver Cow Party(找最短路径的最大值+两次Dijkstra算法)

2017-08-22 20:00:16

#### POJ3268基本的Dijkstra

2013-08-20 22:39:24

#### POJ 3268 Silver Cow Party(Dijkstra)

2014-07-08 16:37:27

#### POJ 3268 Silver Cow Party(最短路 dijkstra求任意两点最短路)

2015-08-22 12:23:35

#### 最短路

2017-03-25 09:59:20

## 不良信息举报

poj　3268　单向最短路，来回路程～