典型应用
Leetcode 169. 多数元素
题目描述
给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。
思路
-
确定递归的终止条件,将问题拆分为若干子问题:
直到所有的子问题都是长度为 1 的数组,递归完成。采用递归的方式将原数组二分为左区间与右区间,直到子数组只剩一个元素。 -
处理子问题得到子结果,并合并:
i) 长度为 1 的子数组中唯一的数显然是众数,直接返回即可;
ii) 如果子数组的众数相同,那么这一段区间的众数显然是它们相同的值;
iii) 如果他们的众数不同,则比较两个众数在整个区间内出现的次数来决定该区间的众数
Python实现
def majorityElement(self, nums, lo=0, hi=None):
# 定义递归函数
def majority_element_rec(lo, hi):
# 数组长度为1时,数组元素即为众数
if lo == hi:
return nums[lo];
# 当数组长度大于1时,将数组切分为两个子数组,分别求子数组的众数,递归调用
mid = lo + (hi-lo)//2
# 切分数组,直到子数组长度为1
left = majority_element_rec(lo, mid)
right = majority_element_rec(mid+1, hi)
# 处理子问题,得到并合并子结果
if left == right:
return left;
if nums.count(left) > nums.count(right):
return left;
else:
return right
return majority_element_rec(0, len(nums)-1)
算法性能分析
待补充
Leetcode 53. 最大子序和
题目描述
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
思路
- 确定递归的终止条件,将问题拆分为若干子问题:
最大子序和可能的三种情况:最大自序和可能位于中心点的左侧、右侧、或跨中心点。 - 处理并合并子问题得到子结果:
i) 用递归的方法将数组拆分为左右两部分,直到子数组的长度为1时,停止递归;
ii) 对于左区间:从右到左计算左边的最大子序和; 对于右区间:从左到右计算右边的最大子序和;最终合并左右区间,得到最大值。
Python实现1
from typing import List
def maxSubArray(self, nums: List[int]) -> int:
size = len(nums)
if size == 0:
return 0
return self.__max_sub_array(num, 0, size-1)
# 定义递归函数
def max_sub_array(self, nums, left, right):
if left == right:
return nums[left]
mid = (left + right) >> 1
return max(self.__max_sub_array(nums, left, mid),
self.__max_sub_array(nums, mid + 1, right),
self.__max_cross_array(nums, left, mid, right))
# 定义递归函数,求跨数组中心点的最大子序和
def __max_cross_array(self, nums, left, mid, right):
# 一定包含 nums[mid] 元素的最大连续子数组的和,
# 左边"扩散到底",得到一个最大数,右边"扩散到底"得到一个最大数,然后再加上中间数
left_sum_max = 0
start_left = mid - 1
s1 = 0
while start_left >= left:
s1 += nums[start_left]
left_sum_max = max(left_sum_max, s1)
start_left -= 1
right_sum_max = 0
start_right = mid + 1
s2 = 0
while start_right <= right:
s2 += nums[start_right]
right_sum_max = max(right_sum_max, s2)
start_right += 1
return left_sum_max + nums[mid] + right_sum_max
算法性能分析
待补充
Leetcode 50. Pow(x, n)
尚未完成
总结
尚未完成
https://leetcode-cn.com/problems/maximum-subarray/solution/dong-tai-gui-hua-fen-zhi-fa-python-dai-ma-java-dai/ ↩︎