Datawhale编程训练营学习记录01 - 分治法

典型应用

Leetcode 169. 多数元素

题目描述

给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。

你可以假设数组是非空的,并且给定的数组总是存在众数。

思路

  1. 确定递归的终止条件,将问题拆分为若干子问题:
    直到所有的子问题都是长度为 1 的数组,递归完成。采用递归的方式将原数组二分为左区间与右区间,直到子数组只剩一个元素。

  2. 处理子问题得到子结果,并合并:
    i) 长度为 1 的子数组中唯一的数显然是众数,直接返回即可;
    ii) 如果子数组的众数相同,那么这一段区间的众数显然是它们相同的值;
    iii) 如果他们的众数不同,则比较两个众数在整个区间内出现的次数来决定该区间的众数

Python实现


def majorityElement(self, nums, lo=0, hi=None):
    # 定义递归函数
    def majority_element_rec(lo, hi):
        # 数组长度为1时,数组元素即为众数
        if lo == hi:
           return nums[lo];
        # 当数组长度大于1时,将数组切分为两个子数组,分别求子数组的众数,递归调用
        mid = lo + (hi-lo)//2
        # 切分数组,直到子数组长度为1
        left = majority_element_rec(lo, mid)
        right = majority_element_rec(mid+1, hi)
        
        # 处理子问题,得到并合并子结果
        if left == right:
           return left;
        if nums.count(left) > nums.count(right):
           return left;
        else:
           return right
    return majority_element_rec(0, len(nums)-1)
    

算法性能分析
待补充

Leetcode 53. 最大子序和

题目描述

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

思路

  1. 确定递归的终止条件,将问题拆分为若干子问题:
    最大子序和可能的三种情况:最大自序和可能位于中心点的左侧、右侧、或跨中心点。
  2. 处理并合并子问题得到子结果:
    i) 用递归的方法将数组拆分为左右两部分,直到子数组的长度为1时,停止递归;
    ii) 对于左区间:从右到左计算左边的最大子序和; 对于右区间:从左到右计算右边的最大子序和;最终合并左右区间,得到最大值。

Python实现1


from typing import List

def maxSubArray(self, nums: List[int]) -> int:
    size = len(nums)
    if size == 0:
        return 0
    return self.__max_sub_array(num, 0, size-1)
# 定义递归函数
def max_sub_array(self, nums, left, right):
    if left == right:
        return nums[left]
    mid = (left + right) >> 1
    return max(self.__max_sub_array(nums, left, mid),
               self.__max_sub_array(nums, mid + 1, right),
               self.__max_cross_array(nums, left, mid, right))
# 定义递归函数,求跨数组中心点的最大子序和
def __max_cross_array(self, nums, left, mid, right):
# 一定包含 nums[mid] 元素的最大连续子数组的和,
# 左边"扩散到底",得到一个最大数,右边"扩散到底"得到一个最大数,然后再加上中间数
    left_sum_max = 0
    start_left = mid - 1
    s1 = 0
    while start_left >= left:
        s1 += nums[start_left]
        left_sum_max = max(left_sum_max, s1)
        start_left -= 1

    right_sum_max = 0
    start_right = mid + 1
    s2 = 0
    while start_right <= right:
        s2 += nums[start_right]
        right_sum_max = max(right_sum_max, s2)
        start_right += 1
    return left_sum_max + nums[mid] + right_sum_max
    

算法性能分析
待补充

Leetcode 50. Pow(x, n)

尚未完成

总结

尚未完成


  1. https://leetcode-cn.com/problems/maximum-subarray/solution/dong-tai-gui-hua-fen-zhi-fa-python-dai-ma-java-dai/ ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值