题目
在本问题中, 树指的是一个连通且无环的无向图。
输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。
结果图是一个以边
组成的二维数组。每一个边
的元素是一对[u, v]
,满足 u < v
,表示连接顶点u
和v
的无向图的边。
返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v]
应满足相同的格式 u < v
。
示例1
输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:
1
/ \
2 - 3
示例二
输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:
5 - 1 - 2
| |
4 - 3
注意:
- 输入的二维数组大小在 3 到 1000。
- 二维数组中的整数在1到N之间,其中N是输入数组的大小。
思路
- 每次遍历边时对首尾节点染色,用额外的数组存储每个节点的颜色,颜色用数字表示
- 若首尾节点均无色,染成相同的新颜色;
- 若首尾节点其中一个有颜色,把无颜色的节点染成有颜色节点的颜色;
- 若首尾节点均有颜色且颜色相同,该边为冗余边
- 无若首尾节点均有颜色且颜色不同,遍历额外数组将这两种颜色统一为一种颜色
public class MyClass {
public static void main(String[] args) {
System.out.println(System.currentTimeMillis());
// System.out.println(new MyClass().removeKdigits( "123456",3));
}
int [][] map;
boolean []visited;
public int[] findRedundantConnection(int[][] edges) {
int n = edges.length;
map = new int[n+1][n+1];
int[] res = new int[2];
visited = new boolean[n+1];
for(int[] edge:edges){
map[edge[0]][edge[1]] = 1;
map[edge[1]][edge[0]] = 1;
}
int count = 0;
for(int i=edges.length-1;i>=0;i--){
int left = edges[i][0];
int right = edges[i][1];
map[left][right] = -1;
map[right][left] = -1;
for(int j=1;j<=n;j++){
if(!visited[j]){
dfs(j,n);
count++;
}
}
if(count >1){
map[left][right] = 1;
map[right][left] = 1;
visited = new boolean[n+1];
count = 0;
continue;
}else{
res[0] = left;
res[1] = right;
return res;
}
}
return new int[]{};
}
void dfs(int i,int n){
visited[i] = true;
for(int j=0;j<=n;j++){
if(map[i][j]==1 &&!visited[j]){
dfs(j,n);
}
}
}
}