数学建模——统计回归模型

前言:看完数学建模的统计回归模型,更是感到了数学建模的“细腻”之处,对比与机器学习,如果说机器学习像是“打一场仗”,那数学建模更是像“做一场手术”,一个简单的回归问题也可以从中感觉到他“细腻”的美感

回归模型是利用统计分析方法建立的最常用的一个模型,下面将通过对软件得到的结果进行分析,进而改进我们的模型。

下面将用3个例子展示对回归模型的优化。

1.牙膏的销售模型

问题的提出:假设一个公司需要预测不同价格和广告费用下的牙膏的销售量,我们需要怎么建立模型呢?

假设我们拿到的数据如下:
这里写图片描述

我们可以根据数据建立一个基本的模型:
y y : 公 司 牙 膏 销 售 量
x1 x 1 : 价 格 差
x2广 x 2 : 公 司 广 告 的 费 用

模型为: y=β0+β1x1+β2x2+β3x22+ϵ y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 2 2 + ϵ

求解这个模型我们会得到下面的结果:
这里写图片描述

这说明y的90.54%可以由模型确定,x2对因变量y 的影响不太显著(因为 β20 β 2 的 置 信 区 间 包 括 0 点 )。

这些数据具体到公司的销售量到底意味着什么呢?

假设我们把控制价格差 x1=0.2 x 1 = 0.2 ,投入广告费 x2=650 x 2 = 650 万,根据我们的模型可以求出y的值为8.2933(百万支),销售量的预测区间为[7.8230,8.7636]。

那么我们就有95%把握知道销售量在7.8320百万支以上。

优化——加入交互项

刚才我们只考虑了每个因素单独的影响,现在我们考虑他们的影响有交互作用,即我们的模型变为:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值