Pandas时间序列预测:未卜知的奶茶销量

关注不迷路,点赞走好运!!!


一、数据魔法学院:奶茶店的时光机

想象你经营着奶茶店"时间の茶"🧋,每天面对这样的灵魂拷问:

明天该备多少珍珠?  
周末会下雨影响销量吗?  
新品芒果椰椰能成爆款吗?

传统经验就像盲盒游戏,而Pandas的时间序列预测就是你的"时间转换器",让数据开口说话!

import pandas as pd
import numpy as np

生成2024年销售数据(含季节波动和节日效应)
日期轴 = pd.date_range("2024-01-01", "2024-12-31", freq="D")
销量 = 200 + 50*np.sin(2*np.pi*日期轴.dayofyear/365)  # 基础波动
销量 += np.where(日期轴.month.isin([6,7,8]), 80, 0)  # 夏季加成
销量 += np.where(日期轴.weekday >=5, 30, 0)  # 周末效应
销量 = np.round(销量 + np.random.normal(0, 20, len(日期轴)))  # 随机扰动

奶茶销售表 = pd.DataFrame({"日期":日期轴, "销量":销量})
print("🔮魔法数据预览:")
print(奶茶销售表.sample(3))

二、数据变形记:让时间开口说话

2.1 时间特征炼金术

日期特征分解
奶茶销售表['月份'] = 奶茶销售表.日期.dt.month
奶茶销售表['星期'] = 奶茶销售表.日期.dt.weekday
奶茶销售表['是否周末'] = 奶茶销售表.星期 >= 5
奶茶销售表['节假日'] = 奶茶销售表.日期.isin(pd.date_range("2024-10-01", periods=7))  # 模拟国庆假期

滞后特征生成
for lag in [1,7,30]:
    奶茶销售表[f'销量_滞后{lag}天'] = 奶茶销售表.销量.shift(lag)

print("\n⏳时间魔法矩阵:")
print(奶茶销售表.iloc[30:33, -4:])

2.2 季节波动透视眼

原始销量
时间序列分解
趋势成分
季节成分
残差成分
长期增长/下降
月度/季度波动
随机噪声
from statsmodels.tsa.seasonal import seasonal_decompose

时间序列分解
分解结果 = seasonal_decompose(奶茶销售表.set_index('日期')['销量'], model='additive')
分解结果.plot()
plt.title("销量成分拆解图")
plt.show()

三、预言家训练营:ARIMA模型实战

3.1 模型参数调优咒语

from statsmodels.tsa.arima.model import ARIMA

黄金参数组合(p,d,q)=(2,1,1)
model = ARIMA(奶茶销售表.销量, order=(2,1,1))
model_fit = model.fit()
print("\n🔮模型诊断报告:")
print(model_fit.summary())

3.2 未来七天预言术

生成预测结果
预测天数 = 7
预测结果 = model_fit.get_forecast(steps=预测天数)
预测区间 = 预测结果.conf_int()

可视化展示
plt.figure(figsize=(12,6))
plt.plot(奶茶销售表.日期, 奶茶销售表.销量, label='历史销量')
plt.plot(pd.date_range("2025-01-01", periods=预测天数), 
        预测结果.predicted_mean, 
        'r--', label='预测值')
plt.fill_between(pd.date_range("2025-01-01", periods=预测天数),
                预测区间.iloc[:,0],
                预测区间.iloc[:,1], color='pink', alpha=0.3)
plt.title("未来七日销量预言")
plt.legend()
plt.show()

四、黑科技升级:XGBoost时间融合

历史销量
特征矩阵
滞后特征
日期特征
天气数据
XGBoost模型
预测结果
from xgboost import XGBRegressor

特征矩阵构建
特征集 = 奶茶销售表.dropna().drop('日期', axis=1)
X = 特征集.drop('销量', axis=1)
y = 特征集.销量

时间穿越验证(防止数据泄漏)
model_xgb = XGBRegressor()
model_xgb.fit(X[:-预测天数], y[:-预测天数])

预测效果展示
未来特征 = 特征集.iloc[-预测天数:].drop('销量', axis=1)
预测结果_xgb = model_xgb.predict(未来特征)

print("\n🤖XGBoost预测结果:")
print(pd.DataFrame({
    "日期": pd.date_range("2025-01-01", periods=预测天数),
    "预测销量": np.round(预测结果_xgb)
}))

五、避坑指南:时间魔法师手册

常见陷阱典型症状解药配方原理剖析
未来数据泄漏预测准确率虚高时间序列交叉验证避免用未来数据训练模型
季节波动忽视预测曲线像心电图增加周期性特征捕捉月/周/季节规律
异常值污染预测结果突变3σ原则清洗数据消除极端值干扰
静态模型陷阱预测误差随时间增大滚动窗口更新模型适应数据分布变化

六、商业魔法:预测驱动经营决策

动态库存建议系统
库存系数 = 1.2  # 安全库存系数
建议采购量 = (预测结果.predicted_mean * 库存系数).astype(int)

print("\n📦智能采购建议:")
采购表 = pd.DataFrame({
    "日期": pd.date_range("2025-01-01", periods=预测天数),
    "预测销量": 预测结果.predicted_mean.astype(int),
    "建议备货量": 建议采购量
})
print(采购表)

生成经营日报
采购表.to_csv("明日采购清单.csv", index=False)

下期预告:
《Pandas动态定价策略:让奶像股票一样智能调价!》——教你用数据驱动价格优化

觉得有用?长按点赞三连击,知识不迷路~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值