卷积神经网络中用1*1 卷积有什么作用或者好处呢?

来自 | 知乎 

https://www.zhihu.com/question/56024942

编辑 | AI有道 

本文仅作学术分享,若侵权,请联系后台删文处理

卷积神经网络中用1*1 卷积有什么作用或者好处呢?为什么非要加个1*1 呢,那不就是简单的线性变换吗??

作者:东东
https://www.zhihu.com/question/56024942/answer/154291405
来源:知乎

1*1卷积过滤器 和正常的过滤器一样,唯一不同的是它的大小是1*1,没有考虑在前一层局部信息之间的关系。最早出现在 Network In Network的论文中 ,使用1*1卷积是想加深加宽网络结构 ,在Inception网络( Going Deeper with Convolutions )中用来降维,如下图:

由于3*3卷积或者5*5卷积在几百个filter的卷积层上做卷积操作时相当耗时,所以1*1卷积在3*3卷积或者5*5卷积计算之前先降低维度。

那么,1*1卷积的主要作用有以下几点:

1、降维( dimension reductionality )。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做1*1的卷积,那么结果的大小为500*500*20。

2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;

作者:zhwhong
https://www.zhihu.com/question/56024942/answer/154846007
来源:知乎

可以实现:

1. 实现跨通道的交互和信息整合

1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价于在传统卷积核后面接cccp层,从而实现多个feature map的线性组合,实现跨通道的信息整合。而cccp层是等价于1×1卷积的,因此细看NIN的caffe实现,就是在每个传统卷积层后面接了两个cccp层(其实就是接了两个1×1的卷积层)。

2. 进行卷积核通道数的降维和升维,减少网络参数

进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数、运算复杂度也就跟着降下来了。以GoogLeNet的3a模块为例,输入的feature map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量,左图pooling后feature map是不变的,再加卷积层得到的feature map,会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)。

最近大热的MSRA的ResNet同样也利用了1×1卷积,并且是在3×3卷积层的前后都使用了,不仅进行了降维,还进行了升维,使得卷积层的输入和输出的通道数都减小,参数数量进一步减少,如下图的结构。(不然真不敢想象152层的网络要怎么跑起来TAT)

作者:康乐
https://www.zhihu.com/question/56024942/answer/369745892
来源:知乎

1、降维(减少参数)

例子1 : GoogleNet中的3a模块

输入的feature map是28×28×192

1×1卷积通道为64

3×3卷积通道为128

5×5卷积通道为32

左图卷积核参数:192 × (1×1×64) +192 × (3×3×128) + 192 × (5×5×32) = 387072

右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了:

192 × (1×1×64) +(192×1×1×96+ 96 × 3×3×128)+(192×1×1×16+16×5×5×32)= 157184

同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量(feature map尺寸指W、H是共享权值的sliding window,feature map 的数量就是channels)

左图feature map数量:64 + 128 + 32 + 192(pooling后feature map不变) = 416 (如果每个模块都这样,网络的输出会越来越大)

右图feature map数量:64 + 128 + 32 + 32(pooling后面加了通道为32的1×1卷积) = 256

GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)

例子2:ResNet中的残差模块

假设上一层的feature map是w*h*256,并且最后要输出的是256个feature map

左侧操作数:w*h*256*3*3*256 =589824*w*h

右侧操作数:w*h*256*1*1*64 + w*h*64*3*3*64 +w*h*64*1*1*256 = 69632*w*h,,左侧参数大概是右侧的8.5倍。(实现降维,减少参数)

2、升维(用最少的参数拓宽网络channal)

例子:上一个例子中,不仅在输入处有一个1*1卷积核,在输出处也有一个卷积核,3*3,64的卷积核的channel是64,只需添加一个1*1,256的卷积核,只用64*256个参数就能把网络channel从64拓宽四倍到256。

3、跨通道信息交互(channal 的变换)

例子:使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3*3,64channels的卷积核后面添加一个1*1,28channels的卷积核,就变成了3*3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这就是通道间的信息交互。

注意:只是在channel维度上做线性组合,W和H上是共享权值的sliding window

4、增加非线性特性

1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。

备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature map,提取不同的特征,得到对应的specialized neuro。

四、从fully-connected layers的角度来理解1*1卷积核

将其看成全连接层

左边6个神经元,分别是a1—a6,通过全连接之后变成5个,分别是b1—b5

左边6个神经元相当于输入特征里面的channels:6

右边5个神经元相当于1*1卷积之后的新的特征channels:5

左边 W*H*6 经过 1*1*5的卷积核就能实现全连接

In Convolutional Nets, there is no such thing as “fully-connected layers”. There are only convolution layers with 1x1 convolution kernels and a full connection table– Yann LeCun

作者:陈运锦
https://www.zhihu.com/question/56024942/answer/195274297
来源:知乎

前面的回答讲了许多1*1卷积核好处之类的,但是我认为没有切中题主想问的。题主想问的其实是,1*1的卷积不就是多个feature channels之间的线性叠加吗,为什要说成是什么1*1的卷积这种貌似有特殊牛逼功能的概念?

题主你想的是对的,1*1的卷积就是多个feature channels线性叠加,nothing more!只不过这个组合系数恰好可以看成是一个1*1的卷积。这种表示的好处是,完全可以回到模型中其他常见N*N的框架下,不用定义新的层。

公众号:AI蜗牛车

保持谦逊、保持自律、保持进步



个人微信
备注:昵称+学校/公司+方向
如果没有备注不拉群!
拉你进AI蜗牛车交流群



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值