1x1卷积(Conv 1*1)的作用

一、来源

C o n v   1 × 1 Conv\ 1\times1 Conv 1×1Network in Network 的简称。

  • 对于单通道图像,其作用仅是进行线性运算;
    0
  • 对于多通道图像, C o n v   1 × 1 Conv\ 1\times1 Conv 1×1 会遍历图像的所有位置,将每个位置处所有通道的值作为其输入,与 1 × 1 1\times1 1×1 卷积核中对应通道的值进行线性运算。本质上可以视为一个全连接神经网络。0

在2014谷歌提出的 Inception Network 与 2015年何神等提出的 Residual Network 中均应用了 C o n v   1 × 1 Conv\ 1\times1 Conv 1×1

二、作用

1. 添加非线性特性

即保持特征图尺寸不发生变化且维持上一层的通道数,在增加网络的深度的同时令网络能够学习更为复杂的函数(特征信息)。
0

2. 对通道数实现升维/降维

设卷积核大小为 5 × 5 × 192 5\times5\times192 5×5×192,以 降维减少计算量 为例。

  • 未使用 C o n v   1 × 1 Conv\ 1\times1 Conv 1×1 的情况下,
    0
    输出大小为 28 × 28 × 32 28\times28\times32 28×28×32,其中每个值均需要经过 5 × 5 × 192 5\times5\times192 5×5×192 次乘法,忽略加法的情况下,该层计算量为:
    28 × 28 × 32 × 5 × 5 × 192 ≈ 120 m 28\times28\times32\times5\times5\times192\approx120m 28×28×32×5×5×192120m

  • 使用 C o n v   1 × 1 Conv\ 1\times1 Conv 1×1 构建瓶颈层(bottleneck)的情况下,
    1
    C o n v   1 × 1 Conv\ 1\times1 Conv 1×1 层: 28 × 28 × 16 × 192 ≈ 2.4 m 28\times28\times16\times192\approx2.4m 28×28×16×1922.4m
    C o n v   1 × 1 Conv\ 1\times1 Conv 1×1 层: 28 × 28 × 32 × 5 × 5 × 16 ≈ 10.0 m 28\times28\times32\times5\times5\times16\approx10.0m 28×28×32×5×5×1610.0m

    总参数量为 12.4 m 12.4m 12.4m。与上一种方式相比,在保证输入和输出的维度相同的情况下,参数量大幅减少。

这就是 C o n v   1 × 1 Conv\ 1\times1 Conv 1×1 的降维作用。

C o n v   1 × 1 Conv\ 1\times1 Conv 1×1 一般只改变输出通道数,而不改变输出的宽度和高度;而 P o o l i n g Pooling Pooling 操作一般只改变输出的宽和高,而不改变通道数。

3. 实现跨通道的信息交互与整合

C o n v   1 × 1 Conv\ 1\times1 Conv 1×1 所实现的通道数增加/减少,本质上其实是通道之间信息的线性组合,这些组合能够使得网络提取更加丰富的高级特征,如上一部分中 28 × 28 × 192 28\times28\times192 28×28×192 的输入经过 1 × 1 × 192 × 16 1\times1\times192\times16 1×1×192×16 的卷积操作后输出为 28 × 28 × 16 28\times28\times16 28×28×16,即该层输入中的原 192 192 192 个特征经过 跨通道线性组合 变成了输出中的 16 16 16 个特征。这就是通道间的信息交互。

参考:一文读懂卷积神经网络中的1x1卷积核

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值