【时间序列】周期性检测算法及其 Python 实践

背景

任何事物在两个不同时刻都不可能保持完全相同的状态,但很多变化往往存在着一定的规律,例如 24 小时日出日落,潮起潮落,这些现象通常称为「周期」

周期性,指时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动。准确提取周期信息,不仅能反映当前数据的规律,应用于相关场景,还可以预测未来数据变化趋势。

时间序列示例

一般而言,时间序列周期性分为三种:

  • 「符号性周期」,例如序列 fbcnfkgbfopsf 周期为 4;

  • 「部分周期性」,例如序列 ansdcdmncdcacdascdmccd 周期为 4;

  • 「分段周期性」,例如上面给定的时间序列即为分段周期性;

针对时间序列的周期性检测问题,这篇文章主要介绍「傅里叶变换」「自相关系数」两种方法及其在实际数据中的效果;

傅里叶变换

傅里叶变换是一种将时域、空域数据转化为频域数据的方法,任何波形(时域)都可以看做是不同振幅、不同相位正弦波的叠加(频域),详细介绍可以参考:An Interactive Guide To The Fourier Transform,???????? 此处放上经典图镇场!

傅里叶变换

对于一条具备周期性的时间序列,它本身就很接近正弦波,所以它包含一个显著的正弦波,周期就是该正弦波的周期,而这个正弦波可以通过傅里叶变换找到,它将时序数据展开成三角函数的线性组合,得到每个展开项的系数,就是傅里叶系数。傅里叶系数越大,表明它所对应的正弦波的周期就越有可能是这份数据的周期。

自相关系数

自相关系数(Autocorrelation Function)度量的是同一事件不同时间的相关程度,不同相位差(lag)序列间的自相关系数可以用 Pearson 相关系数计算。其数学表达如下:

其中 表示相位 的数据延迟 「lag operator」

自相关系数

当序列存在周期性时,遍历足够多的相位差,一定可以找到至少一个足够大的自相关系数,而它对应的相位差就是周期。所以对于检测时序周期来说,只需找到两个自相关系数达到一定阈值的子序列,它们起始时间的差值就是我们需要的周期。

实例说明

为了保证结果的可靠性,可以将傅里叶分析和自相关系数结合起来判断周期性。主要思路是:先通过傅里叶变换找到可能的周期,再用自相关系数做排除,从而得到最可能的周期。

给定一份周期性数据,时间间隔为 5 min。从这份数据中可以看出数据大体上具有周期为 1 day。

示例数据

下面使用傅里叶变换估计周期,代码如下所示

from scipy.fftpack import fft, fftfreq

fft_series = fft(data["value"].values)
power = np.abs(fft_series)
sample_freq = fftfreq(fft_series.size)

pos_mask = np.where(sample_freq > 0)
freqs = sample_freq[pos_mask]
powers = power[pos_mask]

top_k_seasons = 3
# top K=3 index
top_k_idxs = np.argpartition(powers, -top_k_seasons)[-top_k_seasons:]
top_k_power = powers[top_k_idxs]
fft_periods = (1 / freqs[top_k_idxs]).astype(int)

print(f"top_k_power: {top_k_power}")
print(f"fft_periods: {fft_periods}")

取 top-3 振幅值为top_k_power: [ 614.8105282 890.33273899 1831.167168 ] 及其对应的周期 fft_periods: [ 72 278 292] 。???? 数据间隔为 5 min 所以真实周期应为 288,从傅里叶变换即可看出估计值 292 已经非常接近真实值。

现在来计算自相关系数,代码如下所示:

from statsmodels.tsa.stattools import acf

# Expected time period
for lag in fft_periods:
    # lag = fft_periods[np.abs(fft_periods - time_lag).argmin()]
    acf_score = acf(data["value"].values, nlags=lag)[-1]
    print(f"lag: {lag} fft acf: {acf_score}")


expected_lags = np.array([timedelta(hours=12)/timedelta(minutes=5), timedelta(days=1)/timedelta(minutes=5), timedelta(days=7)/timedelta(minutes=5)]).astype(int)
for lag in expected_lags:
    acf_score = acf(data["value"].values, nlags=lag, fft=False)[-1]
    print(f"lag: {lag} expected acf: {acf_score}")

对应的输出如下:

lag: 72 fft acf: 0.07405431832776994
lag: 278 fft acf: 0.7834457453491087
lag: 292 fft acf: 0.8259822269757922
lag: 144 expected acf: -0.5942986094704665
lag: 288 expected acf: 0.8410792774898174
lag: 2016 expected acf: 0.5936030431473589

通过自相关系数来得到显著分数最大值对应的周期,得出的结果为 292;

此处实验补充了预设的三个周期值:12 hour、1 day、7 day,发现算出来还是周期 288 对应的相关分数最大,但是傅里叶变换没有估计出周期值 ????

综上,这个小故事告诉我们:你算出来的还不如我预设的值呢!直接根据先验知识「预设周期」然后计算自相关系数就行了!


建议阅读:

高考失利之后,属于我的大学本科四年

【资源分享】对于时间序列,你所能做的一切.

【时空序列预测第一篇】什么是时空序列问题?这类问题主要应用了哪些模型?主要应用在哪些领域?

【AI蜗牛车出品】手把手AI项目、时空序列、时间序列、白话机器学习、pytorch修炼

公众号:AI蜗牛车

保持谦逊、保持自律、保持进步



个人微信
备注:昵称+学校/公司+方向
如果没有备注不拉群!
拉你进AI蜗牛车交流群



©️2022 CSDN 皮肤主题:Age of Ai 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值