【手把手AI项目】七、MobileNetSSD通过Ncnn前向推理框架在PC端的使用(目标检测 objection detection)

前言

下载编译ncnn

git clone https://github.com/Tencent/ncnn.git
cd ncnn
mkdir -p build
cd build
cmake ..
make -j4

一波搞定下载和编译 查看/home/XXX/ncnn/build/tools和/home/XXX/ncnn/build/tools/caffe分别有ncnn2mem和caffe2ncnn两个可执行文件,如下图所示
在这里插入图片描述在这里插入图片描述

  • caffe2ncnn 将caffemodel转换为ncnnmodel
  • ncnn2mem 对模型进行加密操作

转换模型并加密

准备模型和网络文件

有自己数据集训练的直接用自己数据集的即可,没有的话就跟着我的来吧
这里使用上次所讲的MobileNetSSD的demo的.prototxt文件和caffemodel来使用
下载训练好的model,需要外网才可以
如何在Ubuntu16.04访问国外网站——lantern2018-07-16
deploy_model网址如下:
https://drive.google.com/file/d/0B3gersZ2cHIxRm5PMWRoTkdHdHc/view
MobileNetSSD_deploy.prototxt下载如下
https://download.csdn.net/download/qq_33431368/10850770
在/home/XXX/ncnn/build/tools/下新建一个ncnnmodel的文件夹便于管理

旧版caffe模型和网络文件转换成新版caffe模型和网络文件(ncnn只支持新版)

这个tools在caffe/build/tools中直接就有,具体操作如下

$ ~/caffe/build/tools/upgrade_net_proto_text MobileNetSSD_deploy.prototxt MobileNetSSD_deploy_new.prototxt
$ ~/caffe/build/tools/upgrade_net_proto_binary MobileNetSSD_deploy.caffemodel MobileNetSSD_deploy_new.caffemodel

在这里插入图片描述生成两个new文件
在这里插入图片描述
new.prototxt文件输入层改用 Input,因为每次只需要做一个图片,所以第一个 dim 设为 1

name: "MobileNet-SSD"
layer {
  name: "input"
  type: "Input"
  top: "data"
  input_param {
    shape {
      dim: 1
      dim: 3
      dim: 300
      dim: 300
    }
  }
}
layer {
  name: "conv0"
  type: "Convolution"
  ...........
利用ncnn的两个可执行文件进行转换model和加密

利用/home/XXX/ncnn/build/tools和/home/XXX/ncnn/build/tools/caffe分别有ncnn2mem和caffe2ncnn两个可执行文件
转换model

$./caffe2ncnn' MobileNetSSD_deploy_new.prototxt MobileNetSSD_deploy_new.caffemodel MobileNetSSD_deploy.param MobileNetSSD_deploy.bin

.param相当于prototxt网络文件,.bin相当于caffemodel模型文件

加密(去掉可见字符串, 一种常见加密方式,不加密的话自己的网络可能被别人套用)

$./ncnn2mem mobilenet.param mobilenet.bin mobilenet.id.h mobilenet.mem.h

在这里插入图片描述
最后文件所示
在这里插入图片描述
加密与不加密使用上稍微有点不同,主要体现在load_model上

//j加载非加密的ncnn模型
ncnn::Net net;
net.load_param("MobileNetSSD_deploy.param");
net.load_model("MobileNetSSD_deploy.bin");

//加载加密的ncnn模型
ncnn::Net net;
net.load_param_bin("MobileNetSSD_deploy.param.bin");
net.load_model("MobileNetSSD_deploy.bin");

在PC上run(未加密的,下面叙述的android端使用加密)

在 ncnn/examples中有 mobilenetssd.cpp 我们利用这个文件进行操作
为了不丢失这个demo,我们另外复制一个文件依然在这个文件夹中重命名为MobileNetSSD.cpp
MobileNetSSD.cpp文件修改并做出说明

#include <stdio.h>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include "net.h"

struct Object
{
    cv::Rect_<float> rect;  //画图的框
    int label;   //标签
    float prob;     //概率
};
//检测操作
static int detect_mobilenet(const cv::Mat& bgr, std::vector<Object>& objects)
{
    ncnn::Net mobilenet;
  // 更改 更改成自己的ncnnmodel 和网络文件
    mobilenet.load_param("MobileNetSSD_deploy.param");
    mobilenet.load_model("MobileNetSSD_deploy.bin");
   
   //图片预处理
    const int target_size = 300;  ##对应你训练的时候网络输入dataset的大小,这边为300*300

    int img_w = bgr.cols;
    int img_h = bgr.rows;

    ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, target_size, target_size);
    
 //归一化,这里的值就是我上一篇关于MobileNetSSD网络文件中定义的值
    const float mean_vals[3] = {127.5f, 127.5f, 127.5f};
    const float norm_vals[3] = {1.0/127.5,1.0/127.5,1.0/127.5};
    in.substract_mean_normalize(mean_vals, norm_vals);

    ncnn::Extractor ex = mobilenet.create_extractor(); //前向传播
//     ex.set_num_threads(4); // 线程,可以用四个线程 试试看

    ex.input("data", in);

    ncnn::Mat out;
    ex.extract("detection_out",out); //输出结果

//     printf("%d %d %d\n", out.w, out.h, out.c);
    objects.clear();
    //以下代码为输出的结果的整理可以看出第一个object的value0为标签,以此列推,代码不难
    for (int i=0; i<out.h; i++)
    {
        const float* values = out.row(i);

        Object object;
        object.label = values[0];
        object.prob = values[1];
        object.rect.x = values[2] * img_w;
        object.rect.y = values[3] * img_h;
        object.rect.width = values[4] * img_w - object.rect.x;
        object.rect.height = values[5] * img_h - object.rect.y;

        objects.push_back(object);
    }

    return 0;
}
// 画方框和文本
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
{
 //class的个数和对应具体类别,这边依然利用voc2007和2012所以这边不需要更改,原理上需要更改为自己dataset的数据集的 
 	//可能更改(如果我这个教程不需要更改,自己的dataset需要更改)
    static const char* class_names[] = {"background",
        "aeroplane", "bicycle", "bird", "boat",
        "bottle", "bus", "car", "cat", "chair",
        "cow", "diningtable", "dog", "horse",
        "motorbike", "person", "pottedplant",
        "sheep", "sofa", "train", "tvmonitor"};

    cv::Mat image = bgr.clone();

    for (size_t i = 0; i < objects.size(); i++)
    {
        const Object& obj = objects[i];

        fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
                obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);

        cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));

        char text[256];
        sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);

        int baseLine = 0;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);

        int x = obj.rect.x;
        int y = obj.rect.y - label_size.height - baseLine;
        if (y < 0)
            y = 0;
        if (x + label_size.width > image.cols)
            x = image.cols - label_size.width;

        cv::rectangle(image, cv::Rect(cv::Point(x, y),
                                      cv::Size(label_size.width, label_size.height + baseLine)),
                      cv::Scalar(255, 255, 255), CV_FILLED);

        cv::putText(image, text, cv::Point(x, y + label_size.height),
                    cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
    }

    cv::imshow("image", image);
    cv::waitKey(0);
}

int main(int argc, char** argv)
{
    if (argc != 2)
    {
        fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
        return -1;
    }

    const char* imagepath = argv[1];

    cv::Mat m = cv::imread(imagepath, CV_LOAD_IMAGE_COLOR);
    if (m.empty())
    {
        fprintf(stderr, "cv::imread %s failed\n", imagepath);
        return -1;
    }

    std::vector<Object> objects;
    detect_mobilenet(m, objects);

    draw_objects(m, objects);

    return 0;
}

将这两个文件MobileNetSSD_deploy.param、MobileNetSSD_deploy.bin也复制到这个文件夹中,然后打开ncnn/examples目录下的CMakeLists.txt文件,增加这两行:

add_executable(MobileNetSSD MobileNetSSD.cpp)
target_link_libraries(MobileNetSSD ncnn ${OpenCV_LIBS})

在这里插入图片描述
打开ncnn根目录下的CMakeLists.txt文件,将编译examples语句的注释打开(默认是被注释掉的)
在这里插入图片描述

最后进入ncnn/build路径点开terminal终端

make

就发现编译的可执行文件有了,相当于走了一波.cpp文件的编译过程
在这里插入图片描述查看 ncnn/build/examples文件中
在这里插入图片描述用VOC测试图片试一下即可有效果
测试之前需要把测试图片和ncnnmodel和网络文件都拷贝到这个文件夹中
在这里插入图片描述

./MobileNetSSD 000456.jpg

在这里插入图片描述 
PS: 如果觉得本篇本章对您有所帮助,欢迎关注、评论、点赞!Github给个Star就更完美了_!

联系本人,手机观看,欢迎关注本人公众号

在这里插入图片描述

Reference

https://blog.csdn.net/computerme/article/details/77876633

https://blog.csdn.net/qq_36982160/article/details/79929869

https://github.com/Tencent/ncnn/wiki/ncnn-%E7%BB%84%E4%BB%B6%E4%BD%BF%E7%94%A8%E6%8C%87%E5%8C%97-alexnet

要成功在Android平台上部署mobilenet-ssd模型进行目标检测,首先推荐参阅《Android平台使用ncnn框架部署mobilenet-ssd模型》这一资源,它提供了实用的实战指南,适合希望在移动设备上实现先进目标检测技术的开发者。 参考资源链接:[Android平台使用ncnn框架部署mobilenet-ssd模型](https://wenku.csdn.net/doc/ea80c1kho0?spm=1055.2569.3001.10343) 具体的部署步骤涉及以下关键环节: 1. 环境搭建: - 安装Android Studio,设置好Android SDK和NDK环境,以支持C++开发。 - 下载并集成ncnn库到你的Android项目中,确保所有必要的ncnn组件都已经配置好。 2. 模型准备: - 获取mobilenet-ssd模型文件,将其转换为ncnn支持的格式,即从.onnx或.pb转换为.ncnn格式。 - 确认模型文件已正确放置在项目的资源目录中,以便在应用运行时能够加载。 3. 代码集成: - 在Android项目中,使用ncnn提供的API编写代码加载转换后的mobilenet-ssd模型。 - 实现图像数据的预处理和后处理逻辑,以适应模型的输入输出要求。 4. 功能实现: - 编写目标检测的主逻辑,包括图像捕获、图像预处理、模型推理和检测结果展示。 - 优化推理速度和检测精度,通过调整模型参数和算法优化来达到最佳效果。 5. 测试和优化: - 在不同Android设备上测试目标检测应用,确保模型的稳定性和兼容性。 - 收集测试数据,进行性能评估,根据评估结果进行必要的算法和代码优化。 6. 发布和维护: - 将应用打包成APK文件,进行内部测试或发布到应用市场。 - 根据用户反馈和应用运行状况,进行持续的迭代和更新。 在《Android平台使用ncnn框架部署mobilenet-ssd模型》资源中,你可以找到每一个步骤的详细说明和代码示例,这将帮助你更高效地完成目标检测模型的部署和优化工作。完成学习之后,如果你希望深入了解更多关于Android平台深度学习模型部署的内容,可以查看更多关于ncnn以及Android平台AI应用开发的资料。 参考资源链接:[Android平台使用ncnn框架部署mobilenet-ssd模型](https://wenku.csdn.net/doc/ea80c1kho0?spm=1055.2569.3001.10343)
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值