Catalan数的一些结论

本文探讨了Catalan数在不同数学问题中的应用,包括二进制数的特定排列计数、唱票问题、特定非负整数解问题以及与图形路径相关的计数问题。通过定理和证明,展示了如何利用Catalan数解决这些数学挑战,并给出了相关命题的证明和实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    此文章有一部分(定理,证明)来自于华中师范大学学报(自然科学版)

主要结论

定理 1

n个“1”和n个“0”组成的2n位的二进制数,要求从左到右扫描,“1”的累计数不小于“0”的累计数,这样的二进制数的个数为著名的Calatan数 C(2n,n)/(n+1) ,(n>=0)

证明

令An为n个“1”和n个“0”组成的符合二进制数的个数,n个“1”和n个“0”组成的二进制数可以看作是一种类型(1型)为n个元素和另一种类型(0型)的n个元素的两种不同元素的排列,这样的排列个数位C(2n,n) = (2n)!/(n!n!),从C(2n,n)中减去不符合要求的个数即为所求的An,考虑n个"1"和n个"0"组成的不符合要求的二进制数,不符合要求的数应为:从左到右扫描时,必然存在一个最小的k使得在这k位上首先出现"0"的累计数多于"1"的累计数,特别得,k是一个奇数,而在k之前的k-1位数中,有相等个数的"0"和"1",而且这第k位上是"0",现在把这前k位中每一位上的数进行交换,"1"换成"0","0"换成"1",并且保持剩下的数不变,结果这样的二进制数是一个有n+1个"1"和n-1个"0"的二进制数,即一个不合要求的二进制数对应一个由n+1个"1"和n-1个"0"组成的一个排列,这个过程是可逆的:任何一个由n+1个"1"和n-1个"0"组成的2n位数,由于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值