选择题+编程题 官网有:GESP官网
编程题 1:闯关游戏
知识点: 计数dp, 有向无环图上的动态规划
思路1:
建图: 有向无环图上的动态规划, 可以深搜+记忆化 或者 拓扑排序都是可以的
因为这两个算法都能保证每个节点的dp值在求解的时候,它的前继节点都是已经求解过的.
具体不写了, 因为没有线性dp好写.
思路2: 线性计数dp
动态规划1:
f[i] 表示到i 关 获得的最大分数, 考虑到i 关用的是第 j个通道:
f[i] = max(f[i], f[i- a[j]] + b[i]); 这里要 保证 i-a[j] >= 1
这样的转移方程导致答案比较麻烦.
什么样的状态可能是答案呢?
当 i + a[j] > n 是, 这样的f[i] 都可能是答案, 因为此时的i 可以一步跳过终点.
#include<bits/stdc++.h>
using namespace std;
const int N=1e4+10;
int f[N],a[N],b[N],n,m,ans=-1e9;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)scanf("%d",&a[i]);
for(int i=1;i<=n;++i)scanf("%d",&b[i]);
memset(f,0x80,sizeof(f));
f[1]=b[1];
for(int i=2;i<=n;i++)
for(int j=1;j<=m;j++)
if(i-a[j]>=1)
f[i]=max(f[i],f[i-a[j]]+b[i]);
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
if(i+a[j]>n)
ans=max(ans,f[i]);
printf("%d",ans);
}
/**************************************************************
Problem: 2287
User: Teacher0029 [陈老师]
Language: C++
Result: 正确
Time:10 ms
Memory:2296 kb
****************************************************************/
编程题 2:工作沟通
知识点: 树的最近公共祖先,模拟,倍增优化
满分思路1
模拟1: 计数数组标记每个节点的所有祖先出现的次数,出现次数为 m m m的最大元素就是公共祖先,可以构造伞状图卡掉.
模拟2: 对于x, y 的最近公共祖先可以这样求解:
1. 首先预处理好每个节点i的深度dep[i]
2. 如果dep[x] > dep[y], x = father(x) ;
3. 否则 y = father(y)
4. 意思就是深度大的优先往上爬, 直到x’==y’, 相等的时候x就是原来的x与y的最近公共祖先.
两种方法虽然都能过, 但是都可以被构造数据卡掉. GESP还是蛮友好的
官网答案就是这样模拟的.
源代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+1;
int n, father[N], Hash[N];
void biao(int x){
Hash[x]++;
while(x!=0){
x=father[x];
Hash[x]++;
}
}
int main(){
scanf("%d", &n);
for(int i=1;i<n;++i)
scanf("%d", &father[i]);
int q;
scanf("%d", &q);
while(q--){
int m; scanf("%d", &m);
memset(Hash, 0, sizeof(Hash));
for(int i=1;i<=m;++i){
int x; scanf("%d", &x);
biao(x);
}
int ans = 0;
for(int i=1;i<n;++i)
if(Hash[i]==m)
ans = i;
printf("%d\n", ans);
}
}
/**************************************************************
Problem: 2289
User: admin [管理员]
Language: C++
Result: 正确
Time:215 ms
Memory:2960 kb
****************************************************************/
满分思路2
pos可以跳到father[pos];
如果 father[pos]可以继续跳, 那就跳到 father[father[pos]]
…
可以连跳模拟!
用倍增, father[pos][j] 表示 从pos连跳
2
j
2^j
2j 后的位置.