题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解题思路
1级台阶:1种跳法
2级台阶:2种跳法
3级台阶:3种跳法
4级台阶:5种跳法
。。。
即:台阶级数和跳法总数的关系满足斐波那契数列。
斐波那契数列:1,1,2,3,5,8,13,。。。
用求解斐波那契数列第n项的方式求解该题即可。
Python代码
def jumpFloor(self, number):
list = [1,1]
while number > 0:
list[0],list[1] = list[1],list[0]+list[1]
number -= 1
return list[0]
- 1
- 2
- 3
- 4
- 5
- 6
One More Thing
为什么青蛙跳台阶的跳法数量刚好满足斐波那契数列呢?
获取答案第一步:了解斐波那契数列的定义(图片引自知乎):
获取答案第二步:了解青蛙跳台阶的定义(图片引自博客):
获取答案::
斐波那契数列和青蛙跳台阶除初始条件略有差异,其通式完全一致。
方法1:递归
设青蛙跳上n级台阶有f(n)种方法,把这n种方法分为两大类,第一种最后一次跳了一级台阶,这类方法共有f(n-1)种,第二种最后一次跳了两级台阶,这种方法共有f(n-2)种,则得出递推公式f(n)=f(n-1)+f(n-2),显然,f(1)=1,f(2)=2,递推公式如下:
* 这种方法虽然代码简单,但效率低,会超出时间上限*
代码实现如下
class Solution:
# @param {integer} n
# @return {integer}
def climbStairs(self, n):
if n==1:
return 1
elif n==2:
return 2
else:
return self.climbStairs(n-1)+self.climbStairs(n-2)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
方法2: 用循环来代替递归
这种方法的原理仍然基于上面的公式,但是用循环代替了递归,比上面的代码效率上有较大的提升,可以AC
代码实现如下:
class Solution:
# @param {integer} n
# @return {integer}
def climbStairs(self, n):
if n==1 or n==2:
return n
a=1;b=2;c=3
for i in range(3,n+1):
c=a+b;a=b;b=c
return c
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
方法三:建立简单数学模型,利用组合数公式
这种方法我比较喜欢
设青蛙跳上这n级台阶一共跳了z次,其中有x次是一次跳了两级,y次是一次跳了一级,则有z=x+y ,2x+y=n,对一个固定的x,利用组合可求出跳上这n级台阶的方法共有
种方法
又因为 x在区间[0,n/2]内,所以我们只需要遍历这个区间内所有的整数,求出每个x对应的组合数累加到最后的结果即可
python代码实现如下:
class Solution:
# @param {integer} n
# @return {integer}
def climbStairs(self, n):
def fact(n):
result=1
for i in range(1,n+1):
result*=i
return result
total=0
for i in range(n/2+1):
total+=fact(i+n-2*i)/fact(i)/fact(n-2*i)
return total
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14