python 动态规划总结及相关力扣题目

大部分内容和例子均来自 骆昊老师知乎文章 : 透过面试说算法(4) - 动态规划

1. 分治法和动态规划的区别

动态规划和之前文章中讲到的分治法的区别。分治法要解决的子问题是相互独立的,可以分别进行求解;而动态规划要解决的子问题是有重叠的,所以可以通过记忆化技术把已解决问题的结果保存起来。使用动态规划可以让很多问题的时间复杂度从指数级降到 O ( N 3 ) O(N^3) O(N3) O ( N 2 ) O(N^2) O(N2) 甚至是 O ( N ) O(N) O(N)

2. 什么问题适合使用动态规划解决

如果想知道一个问题适不适合用动态规划来解决,可以看看问题是否符合以下两条性质:

具备最优子结构:整个问题的最佳解法可以由各个子问题的最佳解法构成。

具备相互重叠子问题:子问题会反复出现。

2. 动态规划通常会包含两个环节:

1. 递归:求解子问题。

我的Python 递归总结

2. 记忆化:把已经计算出的结果保存起来。

3. 题目应用:

输入两个字符串,求最长公共子序列(LCS,Longest Common Subsequence)的长度。

题目参考理解1
题目参考理解2

公式:
在这里插入图片描述

def lcs_n(a,b):
    if a == '' or b == '':
        return 0
    if a[0] == b[0]:
        return lcs_n(a[1:],b[1:])+1
    else:
        one = lcs_n(a[1:],b)
        two = lcs_n(a,b[1:])
        return max(one,two)

验证:

a = 'BDCABA'
b = 'ABCBDAB'

res = lcs_n(a,b)
print(res)

虽然问题解决,但是时间复杂度特别高,其渐近时间复杂度为 ( 2 M + 2 N ) (2^M+2^N) (2M+2N) 。可能大家已经注意到了,上面的算法再计算公共子序列长度时存在大量的重复运算,跟斐波那契数列优化前的代码是一样的。既然如此我们就可以考虑用动态规划的思路,通过保存中间运算结果对代码加以优化。

def lcs(a, b):
    matrix = [[0] * (len(b) + 1) for _ in range(len(a) + 1)]
    for i in range(1, len(a) + 1):
        for j in range(1, len(b) + 1):
            if a[i - 1] == b[j - 1]:
                matrix[i][j] = matrix[i - 1][j - 1] + 1
            else:
                matrix[i][j] = max(matrix[i - 1][j], matrix[i][j - 1])
    return matrix[-1][-1]

上面算法的渐近时间复杂度为 $ O( M * N)$,也可以利用functools里的装饰器lru_cache 添加记忆

import functools
@functools.lru_cache(maxsize=None)

def lcs_n(a,b):
    if a == '' or b == '':
        return 0
    if a[0] == b[0]:
        return lcs_n(a[1:],b[1:])+1
    else:
        one = lcs_n(a[1:],b)
        two = lcs_n(a,b[1:])
        return max(one,two)

a = 'BDCABA'
b = 'ABCBDAB'

res = lcs_n(a,b)
print(res) # 4

对于一个有 N N N 个整数的列表,找出它的子列表元素之和的最大值。

在这里插入图片描述
方法一:使用二重循环来找出这个子列表和的最大值,代码如下所示,渐近时间复杂度为 O ( N 2 ) O(N^2) O(N2)

items = list(map(int, input().split()))
max_sum = items[0]
for i in range(len(items)):
    cur_sum = 0
    for item in items[i:]:
        cur_sum += item
        if max_sum < cur_sum:
            max_sum = cur_sum
print(max_sum)

# 1 -2 3 5 -3 2 # 8
# 0 -2 3 5 -1 2 # 9
# -9 -2 -3 -5 -3 # -2

在这里插入图片描述

items = list(map(int,input().split()))
overall = partial = items[0]
for i in range(1,len(items)):
    partial = max(items[i],partial+items[i])
    overall = max(overall,partial)
print(overall)

# 1 -2 3 5 -3 2 # 8
# 0 -2 3 5 -1 2 # 9
# -9 -2 -3 -5 -3 # -2

力扣 1035 不相交的线(lcs问题)

问题描述:
在这里插入图片描述
在这里插入图片描述

class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        len1,len2 = len(nums1),len(nums2)
        matrix = [[0] * (len2 + 1) for _ in range(len1 + 1)]
        for i in range(1,len1 + 1):
            for j in range(1,len2 +1):
                if nums1[i-1]==nums2[j-1]:
                    matrix[i][j] = matrix[i-1][j-1] +1
                else:
                    matrix[i][j] = max(matrix[i-1][j],matrix[i][j-1])
        return matrix[-1][-1]

力扣 322 零钱兑换

| 题目;
在这里插入图片描述
| 方法一:带memory的递归

import functools
class Solution:
    def coinChange(self, coins, amount: int):
        @functools.lru_cache(maxsize=None)
        def dp(n):
            res = float("inf")
            if n < 0 : return -1
            if n == 0: return 0
            for coin in coins:
                subproblem = dp(n-coin)
                if subproblem == -1:continue
                res = min(res,1+dp(n-coin))
            return res if res!=float("inf") else -1
        return dp(amount)

** | 方法二:动态规划**
对于动态规划的理解
题目详解
在这里插入图片描述

class Solution:
    def coinChange(self, coins:List, amount: int):
        dp = [0] + [10001]*amount # 0 <= amount <= 10^4
        for coin in coins:
            for j in range(coin,amount+1):
                dp[j] = min(dp[j] , dp[j-coin] + 1 )
        return dp[amount] if dp[amount]!= 10001 else -1 

力扣 53. 最大连续子数组和

题目:
在这里插入图片描述
题目解析:参考解析地址

在写状态转移方程的时候会遇到,经过一个数的最大连续子数组的最大和是多少,但这样很难写出状态转移方程,因为子问题很难划分。现在我们换一种角度考虑该问题:以这个数字结尾的最大子序列之和是多少,此时子问题便很好确定:

dp = [0] * len(nums)

我们的问题转化为了,确定并存储每一个,以nums[i]结尾的最大连续子序列之和。
其中: d p [ 0 ] = n u m s [ 0 ] dp[0] = nums[0] dp[0]=nums[0]
如果 d p [ i − 1 ] < 0 dp[i-1]<0 dp[i1]<0 , 那么 d p [ i ] = n u m s [ i ] dp[i] = nums[i] dp[i]=nums[i] , 否则 d p [ i ] = d p [ i − 1 ] + n u m s [ i ] dp[i] = dp[i-1] + nums[i] dp[i]=dp[i1]+nums[i]

取最大的dp值即得到最终结果:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        size = len(nums)
        if size == 0:
            return 0
        dp = [0]*size
        dp[0] = nums[0]
        for i in range(1,size):
            if dp[i-1] >= 0:
                dp[i] = dp[i-1] + nums[i]
            else:
                dp[i] = nums[i]
        return max(dp)

在这里插入图片描述
解法二:分治法 (直接贴了答案,待后续自己继续推敲)

说起分治法,首先想到了归并排序算法

根据「状态转移方程」, p [ i ] p[i] p[i] 的值只和 d p [ i − 1 ] dp[i - 1] dp[i1] 有关,因此可以使用「滚动变量」的方式将代码进行优化。

from typing import List


class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        size = len(nums)
        if size == 0:
            return 0
        return self.__max_sub_array(nums, 0, size - 1)

    def __max_sub_array(self, nums, left, right):
        if left == right:
            return nums[left]
        mid = (left + right) >> 1
        return max(self.__max_sub_array(nums, left, mid),
                   self.__max_sub_array(nums, mid + 1, right),
                   self.__max_cross_array(nums, left, mid, right))

    def __max_cross_array(self, nums, left, mid, right):
        # 一定包含 nums[mid] 元素的最大连续子数组的和,
        # 思路是看看左边"扩散到底",得到一个最大数,右边"扩散到底"得到一个最大数
        # 然后再加上中间数
        left_sum_max = 0
        start_left = mid - 1
        s1 = 0
        while start_left >= left:
            s1 += nums[start_left]
            left_sum_max = max(left_sum_max, s1)
            start_left -= 1

        right_sum_max = 0
        start_right = mid + 1
        s2 = 0
        while start_right <= right:
            s2 += nums[start_right]
            right_sum_max = max(right_sum_max, s2)
            start_right += 1
        return left_sum_max + nums[mid] + right_sum_max
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值