专注如一的博客

智商是硬伤

POJ 2155 Matrix(二维树状数组+区间更新单点求和)

题意:给你一个n*n的全0矩阵,每次有两个操作:
C x1 y1 x2 y2:将(x1,y1)到(x2,y2)的矩阵全部值求反
Q x y:求出(x,y)位置的值

树状数组标准是求单点更新区间求和,但是我们处理一下就可以完美解决此问题。区间更新可以使用区间求和的方法,在更新的(x2,y2)记录+1,在更新的(x1-1,y1-1)-1(向前更新到最前方)。单点求和就只需要与区间更新相反,向后求一个区间和。这样做的理由是:如果求和的点在某次更新范围内,我们+1但是不执行-1,否者要么都不执行,要么都执行就不变。
但是这儿我们是二维树状数组,我们需要使用容斥原理:(x2,y2)+1,(x1-1,y2)-1,(x2,y1-1)-1,(x1-1,y1-1)+1

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=1<<28;
const double Pi=acos(-1.0);
const int Mod=1e9+7;
const int Max=1010;
int bit[Max][Max],n;
void Init(int n)
{
    for(int i=0;i<=n;i++)
        for(int j=0;j<=n;j++)
        bit[i][j]=0;
    return;
}
int lowbit(int x)
{
    return x&(-x);
}
void Add(int x,int y,int z)
{
    for(int i=x;i>0;i-=lowbit(i))
    {
        for(int j=y;j>0;j-=lowbit(j))
        {
            bit[i][j]=(bit[i][j]+z+2&1);
        }
    }
    return;
}
int Sum(int x,int y)
{
    int sum=0;
    for(int i=x;i<=n;i+=lowbit(i))
    {
        for(int j=y;j<=n;j+=lowbit(j))
        {
            sum+=bit[i][j];
        }
    }
    return sum & 1;
}
int main()
{
    int t,q,xx1,xx2,yy1,yy2;
    char str[10];
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d %d",&n,&q);
        Init(n);
        while(q--)
        {
            scanf("%s",str);
            if(str[0]=='C')
            {
                scanf("%d %d %d %d",&xx1,&yy1,&xx2,&yy2);
                Add(xx2,yy2,1);//区间更新的容斥原理
                Add(xx1-1,yy2,-1);
                Add(xx2,yy1-1,-1);
                Add(xx1-1,yy1-1,1);
            }
            else
            {
                scanf("%d %d",&xx1,&yy1);
                printf("%d\n",Sum(xx1,yy1));
            }
        }
        if(t)
            printf("\n");
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33530115/article/details/52465427
文章标签: poj
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭