LaTeX编辑数学公式基本语法元素
LaTeX中数学模式有两种形式:inline和display。前者是指正文插入行间数学公式,后者独立排列,可以有或没有编号。
- 行间公式(inline):用
$...$
将公式括起来 - 块间公式(display):用
$$...$$
将公式括起来,默认显示在行中间 - 各类希腊字母表
希腊字母 | 英文 | 希腊字母 | 英文 | 希腊字母 | 英文 | 希腊字母 | 英文 |
---|---|---|---|---|---|---|---|
α \alpha α | \alpha | θ \theta θ | \theta | o o o | o | τ \tau τ | \tau |
β \beta β | \beta | ϑ \vartheta ϑ | \vartheta | π \pi π | \pi | υ \upsilon υ | \upsilon |
γ \gamma γ | \gamma | ι \iota ι | \iota | ϖ \varpi ϖ | \varpi | ϕ \phi ϕ | \phi |
δ \delta δ | \delta | κ \kappa κ | \kappa | ρ \rho ρ | \rho | φ \varphi φ | \varphi |
ϵ \epsilon ϵ | \epsilon | λ \lambda λ | \lambda | ϱ \varrho ϱ | \varrho | χ \chi χ | \chi |
ε \varepsilon ε | \varepsilon | μ \mu μ | \mu | σ \sigma σ | \sigma | ψ \psi ψ | \psi |
ζ \zeta ζ | \zeta | ν \nu ν | \nu | ς \varsigma ς | \varsigma | ω \omega ω | \omega |
η \eta η | \eta | ξ \xi ξ | \xi | ||||
Γ \Gamma Γ | \Gamma | Λ \Lambda Λ | \Lambda | Σ \Sigma Σ | \Sigma | Ψ \Psi Ψ | \Psi |
Δ \Delta Δ | \Delta | Ξ \Xi Ξ | \Xi | Υ \Upsilon Υ | \Upsilon | Ω \Omega Ω | \Omega |
Θ \Theta Θ | \Theta | Π \Pi Π | \Pi | Φ \Phi Φ | \Phi |
上下标、根号、省略号
-
下标:
$x_i$
--> x i x_i xi -
上标:
$x^2$
--> x 2 x^2 x2注意:上下标如果多余一个字母或者符号,需要用一对{}括起来:
- $x _ {i1}$ --> x i 1 x _ {i1} xi1
- $x^{\alpha t}$ --> x α t x ^ {\alpha t} xαt
-
根号:\sqrt , eg: $\sqrt[n]{5}$ --> 5 n \sqrt[n]{5} n5
-
省略号:\dots \cdots 分别表示 … \dots …, ⋯ \cdots ⋯
运算符
-
基本运算符:+ - * /等可以直接输入,其他特殊的有:
\pm \times \div \cdot \cap \cup \geq \leq \neq \approx \equix ± \pm ± × \times × ÷ \div ÷ ⋅ \cdot ⋅ ∩ \cap ∩ ∪ \cup ∪ ≥ \geq ≥ ≤ \leq ≤ ≠ \neq = ≈ \approx ≈ ≡ \equiv ≡ -
求和:
$\sum_1^n$
: ∑ 1 n \sum_1^n ∑1n -
累乘:
$\prod_{n=1}^{99}x_n$
: ∏ n = 1 99 x n \prod_{n=1}^{99}x_n ∏n=199xn -
积分:
$\int_1^n$
: ∫ 1 n \int_1^n ∫1n -
极限:
- \lim\limits _ {x \to \infty} : lim x → 0 \lim\limits _ {x \to 0} x→0lim
分数
分数的表示:\frac{}{},如$\frac{3}{8}$ ==> 3 8 \frac{3}{8} 83
矩阵和行列式
矩阵
==$$\begin{matrix}…\end{matrix}$$,使用&分隔同行元素,\\表示换行:
示例:
$$
\begin{matrix}
1&x&x^2\\
1&y&y^2\\
1&z&z^2\\
\end{matrix}
$$
结果:
1
x
x
2
1
y
y
2
1
z
z
2
\begin{matrix} 1&x&x^2\\ 1&y&y^2\\ 1&z&z^2\\ \end{matrix}
111xyzx2y2z2
行列式
示例:
$$
X=\left|
\begin{matrix}
x_{11} & x_{12} & \cdots & x_{1d}\\
x_{21} & x_{22} & \cdots & x_{2d}\\
\vdots & \vdots & \ddots & \vdots\\
x_{m1} & x_{m2} & \cdots & x_{md} \\
\end{matrix}
\right|
$$
结果:
X
=
∣
x
11
x
12
⋯
x
1
d
x
21
x
22
⋯
x
2
d
⋮
⋮
⋱
⋮
x
m
1
x
m
2
⋯
x
m
d
∣
X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots\\ x_{m1} & x_{m2} & \cdots & x_{md} \\ \end{matrix} \right|
X=∣∣∣∣∣∣∣∣∣x11x21⋮xm1x12x22⋮xm2⋯⋯⋱⋯x1dx2d⋮xmd∣∣∣∣∣∣∣∣∣
箭头
符号 | 表达式 | 符号 | 表达式 |
---|---|---|---|
← \leftarrow ← | \lefrarrow | ⟵ \longleftarrow ⟵ | \longleftarrow |
→ \rightarrow → | \rightarrow | ⟶ \longrightarrow ⟶ | \longrightarrow |
↔ \leftrightarrow ↔ | \leftrightarrow | ⟷ \longleftrightarrow ⟷ | \longleftrightarrow |
⇐ \Leftarrow ⇐ | \Leftarrow | ⟸ \Longleftarrow ⟸ | \Longleftarrow |
⇒ \Rightarrow ⇒ | \Rightarrow | ⟹ \Longrightarrow ⟹ | \Longrightarrow |
⇔ \Leftrightarrow ⇔ | \Leftrightarrow | ⟺ \Longleftrightarrow ⟺ | \Longleftrightarrow |
方程式
$$
\begin{equation}
E=mc^2
\end{equation}
$$
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ E=mc^2 \end{eq…
分隔符
各种括号用 () [] { } \langle\rangle 等命令表示,注意花括号通常用来输入命令和环境的参数,所以在数学公式中它们前面要加 \。可以在上述分隔符前面加 \big \Big \bigg \Bigg 等命令来调整大小。
$$
\max \limits_{a<x<b} \Bigg\{f(x)\Bigg\}
$$
max a < x < b { f ( x ) } \max \limits_{a<x<b} \Bigg\{f(x)\Bigg\} a<x<bmax{f(x)}
分段函数
$$
f(n) =
\begin{cases}
n/2, & \text {if $n$ is even}\\
3n+1, & \text {if $n$ is odd}
\end{cases}
$$
f ( n ) = { n / 2 , if n is even 3 n + 1 , if n is odd f(n) = \begin{cases} n/2, & \text {if $n$ is even}\\ 3n+1, & \text {if $n$ is odd} \end{cases} f(n)={n/2,3n+1,if n is evenif n is odd
方程组
$$
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3
\end{array}
\right. # 注意right后面有个小数点
$$
{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right. ⎩⎨⎧a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
案例
线性模型
$$h(\theta)=\sum_{j=0}^n \theta_j x_j$$
h ( θ ) = ∑ j = 0 n θ j x j h(\theta)=\sum_{j=0}^n \theta_j x_j h(θ)=j=0∑nθjxj
均方误差
$$J(\theta) = \frac{1}{2m} \sum_{i=0}^m (y^i-h_\theta (x^i))^2$$
J ( θ ) = 1 2 m ∑ i = 0 m ( y i − h θ ( x i ) ) 2 J(\theta) = \frac{1}{2m} \sum_{i=0}^m (y^i-h_\theta (x^i))^2 J(θ)=2m1i=0∑m(yi−hθ(xi))2
批量梯度下降
$$
\frac{\partial J(\theta)}{\partial\theta_j} = -\frac{1}{m}\sum_{i=0}^m (y^i - h_\theta (x^i))x^i_j
$$
∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) x j i \frac{\partial J(\theta)}{\partial\theta_j} = -\frac{1}{m}\sum_{i=0}^m (y^i - h_\theta (x^i))x^i_j ∂θj∂J(θ)=−m1i=0∑m(yi−hθ(xi))xji
推导过程:
$$
\begin{align}
\frac{\partial J(\theta)}{\partial \theta_j}
& = - \frac{1}{m} \sum_{i=0}^m (y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\
& = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j - y^i)\\
& = - \frac{1}{m}\sum_{i=0}^m(y^i-h_\theta (x^i))x^i_j
\end{align}
$$
∂
J
(
θ
)
∂
θ
j
=
−
1
m
∑
i
=
0
m
(
y
i
−
h
θ
(
x
i
)
)
∂
∂
θ
j
(
y
i
−
h
θ
(
x
i
)
)
=
−
1
m
∑
i
=
0
m
(
y
i
−
h
θ
(
x
i
)
)
∂
∂
θ
j
(
∑
j
=
0
n
θ
j
x
j
i
−
y
i
)
=
−
1
m
∑
i
=
0
m
(
y
i
−
h
θ
(
x
i
)
)
x
j
i
\begin{aligned} \frac{\partial J(\theta)}{\partial \theta_j} & = - \frac{1}{m} \sum_{i=0}^m (y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\ & = -\frac{1}{m}\sum_{i=0}^m(y^i-h_\theta(x^i))\frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j - y^i)\\ & = - \frac{1}{m}\sum_{i=0}^m(y^i-h_\theta (x^i))x^i_j \end{aligned}
∂θj∂J(θ)=−m1i=0∑m(yi−hθ(xi))∂θj∂(yi−hθ(xi))=−m1i=0∑m(yi−hθ(xi))∂θj∂(j=0∑nθjxji−yi)=−m1i=0∑m(yi−hθ(xi))xji
CSDN使用的是KaTeX(latex的渲染器),不支持align,但可以用aligned达到同样的目的
引用:
https://www.cnblogs.com/Sinte-Beuve/p/6160905.html
https://blog.csdn.net/happyday_d/article/details/83715440