函数式接口
什么是函数式接口?
函数式接口,@FunctionalInterface,简称FI,简单的说,FI就是指仅含有一个抽象方法的接口,以@Functionalnterface标注,注意⚠️,这里的抽象方法指的是该接口自己特有的抽象方法,而不包含它从其上级继承过来的抽象方法,例如:
@FunctionalInterface
Interface FI{
abstract judge(int a);
abstract equals();
}
上面这个接口尽管含有两个抽象方法,但是它仍然是一个FI,因为equals抽象方法是其从超类Object中继承的(当然这里的“接口继承超类Object”的说法很有争议,但是不妨碍咱们这里拿来理解FI这个概念),若是对于函数借口还有什么不明白的,个人推荐一个博客:http://lucida.me/blog/java-8-lambdas-insideout-language-features/这篇博客对java8中的一些新特性讲解的非常好!!
Java8中常用的全新的接口
Predicate接口
Predicate 接口只有一个参数,返回boolean类型。该接口包含多种默认方法来将Predicate组合成其他复杂的逻辑(比如:与,或,非):
代码如下:
Predicate<String> predicate = (s) -> s.length() > 0;
predicate.test("foo"); // true
predicate.negate().test("foo"); // false
Predicate<Boolean> nonNull = Objects::nonNull;
Predicate<Boolean> isNull = Objects::isNull;
Predicate<String> isEmpty = String::isEmpty;
Predicate<String> isNotEmpty = isEmpty.negate();
Function 接口
Function 接口有一个参数并且返回一个结果,并附带了一些可以和其他函数组合的默认方法(compose, andThen):
代码如下:
Function<String, Integer> toInteger = Integer::valueOf;
Function<String, String> backToString = toInteger.andThen(String::valueOf);
backToString.apply("123"); // "123"
Supplier 接口
Supplier 接口返回一个任意范型的值,和Function接口不同的是该接口没有任何参数
代码如下:
Supplier<Person> personSupplier = Person::new;
personSupplier.get(); // new Person
Consumer 接口
Consumer 接口表示执行在单个参数上的操作。
代码如下:
Consumer<Person> greeter = (p) -> System.out.println("Hello, " + p.firstName);
greeter.accept(new Person("Luke", "Skywalker"));
Comparator 接口
Comparator 是老Java中的经典接口, Java 8在此之上添加了多种默认方法:
代码如下:
Comparator<Person> comparator = (p1, p2) -> p1.firstName.compareTo(p2.firstName);
Person p1 = new Person("John", "Doe");
Person p2 = new Person("Alice", "Wonderland");
comparator.compare(p1, p2); // > 0
comparator.reversed().compare(p1, p2); // < 0
并行Streams
Stream有串行和并行两种,串行Stream上的操作是在一个线程中依次完成,而并行Stream则是在多个线程上同时执行。
下面的例子展示了是如何通过并行Stream来提升性能:
首先我们创建一个没有重复元素的大表:
代码如下:
int max = 1000000;
List<String> values = new ArrayList<>(max);
for (int i = 0; i < max; i++) {
UUID uuid = UUID.randomUUID();
values.add(uuid.toString());
}
然后我们计算一下排序这个Stream要耗时多久,
串行排序:
代码如下:
long t0 = System.nanoTime();
long count = values.stream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("sequential sort took: %d ms", millis));
// 串行耗时: 899 ms
并行排序:
代码如下:
long t0 = System.nanoTime();
long count = values.parallelStream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("parallel sort took: %d ms", millis));
// 并行排序耗时: 472 ms
上面两个代码几乎是一样的,但是并行版的快了50%之多,唯一需要做的改动就是将stream()改为parallelStream()。