线性模型

一般地,给定由d个属性描述的示例{\color{Red} }{\bf{X}}=({x_{1}},{x_{2}},...,{x_{d}}),其中x_{_{i}}X在第i个属性上的取值,线性模型通常试图学得一个通过属性的线性组合来进行预测的函数,即

f(x)=w_{1}x_{1}+w_{2}x_{2}+...+w_{d}x_{d}+b,一般写成向量的形式为:f(x)=W^{T}X+b,这里w和b是参数,一旦参数确定则对应的模型也就确定了。

最小二乘法

给定数据集D=\{(x_{1},y_{1}),(x_{2},y_{2}),...,(x_{m},y_{m})\},其中x_{i}=\{x_{i1},x_{i2},...,x_{id}\}​​​​​,y_{i}\in\mathbb{R},目标是:试图学习一个线性模型以尽可能地准确预测实值输出标记y。

1.一般给出的属性均为文本数据,要先进行离散化或连续化

2.优化目标函数


f(x_{i})=wx_{i}+b\Rightarrow J=argmin_{(w,b))} \sum_{i=1}^{m}(y_{i}-wx_{i}-b)^2

分别针对上式对w和b进行求导置零可得对应的w和b的解


推广最小二乘法到多元线性回归上,即f({\bf{x}}_{i})=\mathbf{w}^{T}{\bf{x}}_{i}\Rightarrow J=argmin_{\bf{w}}({\bf{y}}-{\bf{​{w^{T}}x}})^{T}({\bf{y}}-{\bf{w}}^{T}{\bf{x}})

在最小二乘法的基础上针对输出标记添加适当的指数尺度变化,可以将线性模型变化成非线性模型譬如lny={\bf{w}^{T}x}+b

线性判别分析:LDA

LDA的思想非常朴素:给定训练样例集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的接近,而不同类的样例的投影点尽可能的远离。给定类别样本的中心U0,U1,则类样本中心在直线上的投影为W^TU0,W^TU1,若将所有的样本点都投影到直线上,则两类样本的协方差分别为w^{T}\sum_{0}ww^{T}\sum_{1}w,则LDA的最大化目标式为:J=\frac{\left \| {\bf{w}^TU0}-{\bf{w}^{T}U1} \right \|_{2}^{2}}{}{​{\bf{w^{T}(\Sigma _{0}+\Sigma_{1})}}{\bf{w}}}

多分类学习

目前基于多分类学习的基本策略是,利用二分类学习器来解决多分类的问题。一般地,考虑N个类别C1,C2,...,CN。多分类的基本思路为“拆解法”。

对应的拆解法有:”一对一“(one.vs.one——OvO),即将原始数据集依据类别进行一一配对,形成N(N-1)/2个学习器,然后依据分类器的输出结果进行投票,投票结果作为最终的分类结果。

“一对其余”(one.vs.Rest——OvR),即将原始数据集依据某一个类别进行划分,该类别为正例,非该类别为反例,从而形成N个学习器,若N个学习器只有一个判断为正例,则判断为正例;若有多个学习器输出为正例,则选择所有学习器中置信度比较高的学习器输出结果作为分类结果。

“多对多”(Many.vs.Many——MvM),即将N个类做M次划分,选取一部分类别做为正例,其他类别作为反例,然后根据形成M个学习器分别对测试样本进行预测,这些预测标记形成一个编码,将该预测编码和每个类的编码进行比较,返回其中相似度比较大(距离较小)的类别作为预测结果。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值