语义分割
一路狂奔的猪
从事计算机视觉,神经网络研究,自然语言处理等相关方向。擅长人体检测和人体姿态方向。涉猎过的方向:行人检测、弱监督目标检测、语义分割,语义分割域适应,生成对抗网络,迁移学习,多标签,命名实体识别。希望猪猪在学习的路上一路狂奔
展开
-
最简单的基于FCN的语义分割任务
下面介绍全卷积网络最简单的结构,实际就是卷积层和反卷积层组成。即使只采用三个卷积层两个池化层(比Alexnet)更简单也能实现语义分割。下面语义分割的二分类和三分类为例。图像尺寸可以缩小到64x64.想要提升精度,在GitHub上有介绍最新的FCN结构完整语义分割任务,最新的结构无论是PSPNet,DeeplabV3,CCNet,DANet都是在想办法提升网络的感受野,利用上下文信息。从而提升语义...原创 2018-03-07 15:49:54 · 2399 阅读 · 9 评论 -
语义分割研究现状
以语义分割热门的数据集Cityscapes的精度作为参考,比较当前语义分割网络效果:可以通过ICNet中的这张图来说明目前大多数方法的精度以及速度,目前MIOU超过80的有PSPNet、ResNet38、PSPNet、DUC、以及DANet最近开源的CCNet(最后两个基于attention机制)。最简单的基于FCN的人脸语义分割Code:https://github.com/Hq...原创 2019-01-12 21:49:14 · 6220 阅读 · 0 评论 -
PSP结构在自己的网络结构中使用
PSP全称:Pyramid Scene Parsing 中间的结构是PSPnet的核心结构,称为金字塔场景解析,作用是捕获多尺度信息。b的是CNN网络中输出的特征图,金字塔场景解析用于捕获不同子区域的特征,经过PSP模块得到的特征图包含了局部和全局信息,后面接一个上采样和concat层,最后一个卷积输出。 ...原创 2019-01-26 17:48:58 · 1054 阅读 · 1 评论 -
CVPR2019|用于语义分割的结构化知识蒸馏
论文标题:Structured Knowledge Distillation for Semantic Segmentation论文地址:https://arxiv.org/abs/1903.04197这是一篇CVPR2019做语义分割任务的文章,在训练好的大的分割模型上运用知识蒸馏的算法,使得比较小的模型也能提高语义分割的性能。从上图可以看到,本论文提出的方法能够在不增加参数量...原创 2019-03-30 14:27:00 · 5545 阅读 · 1 评论