目标检测
一路狂奔的猪
从事计算机视觉,神经网络研究,自然语言处理等相关方向。擅长人体检测和人体姿态方向。涉猎过的方向:行人检测、弱监督目标检测、语义分割,语义分割域适应,生成对抗网络,迁移学习,多标签,命名实体识别。希望猪猪在学习的路上一路狂奔
展开
-
旋转图片和旋转框(在线抠图数据增强)
import osimport cv2from PIL import Imageimport torchimport randomimport numpy as npimport mathimport matplotlib.pyplot as plt# 绕pointx,pointy逆时针旋转def Nrotate(angle,valuex,valuey,pointx,poin...原创 2020-03-19 14:04:10 · 714 阅读 · 0 评论 -
CVPR2019检测论文汇总
Table of Contents2019CVPR检测论文20篇:行人重识别、行人检测6篇人脸6篇2019CVPR检测论文20篇:检测1、Stereo R-CNN based 3D Object Detection for Autonomous Driving作者:Peiliang Li, Xiaozhi Chen, Shaojie Shen论文链接:https:/...原创 2019-04-23 21:08:13 · 2714 阅读 · 4 评论 -
检测框的输入时进行回缩(输入图像裁剪)
在输入图片时对图片去掉边上一圈,针对外扩图片的矫正:img = cv2.imread(filename, cv2.IMREAD_COLOR)img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)flag = Trueimage_h, image_w = img.shape[:2]off_h = int(image_h / 10)off_w = int...原创 2019-05-08 12:38:09 · 350 阅读 · 0 评论 -
人体检测常用的数据增强方法之——随机亮度
Table of Contents效果:代码实现函数分析原图和hsv图:np.where(condition, x, y)效果:参考CSP网络的Github源码,人体检测常用的两个数据增强方法:水平随机翻转,随机亮度水平翻转code很多,下面只讲一下随机明暗亮度,实际中亮度范围根据实际需要选择,比如0.7-1.3由原始变为最亮:(范围0.5-1.9),正常亮度为...原创 2019-05-18 23:21:14 · 2144 阅读 · 0 评论 -
Anchor-free的目标检测文章
参考:https://mp.weixin.qq.com/s/eOGkafUE6papKHCpbYrwqQ一个同行大神的总结:https://blog.csdn.net/qiu931110/article/details/89430747原文名为:重磅!13篇基于Anchor free的目标检测方法,这里我只介绍我觉得比较有用的文章和算法13篇基于Anchor free的目标检测论文列表...原创 2019-05-25 17:11:02 · 4838 阅读 · 1 评论 -
SmoothL1 loss
实现代码如下:def smooth_l1_loss(input, target, sigma, reduce=True, normalizer=1.0): beta = 1. / (sigma ** 2) diff = torch.abs(input - target) cond = diff < beta loss = torch.where(c...原创 2019-05-22 17:34:49 · 3232 阅读 · 0 评论 -
SoftNMS的配置
参考知乎:https://zhuanlan.zhihu.com/p/410466201.置信度阈值:假如还检测出了3号框,而我们的最终目标是检测出1号和2号框,并且剔除3号框,原始的nms只会检测出一个1号框并剔除2号框和3号框,而softnms算法可以对1、2、3号检测狂进行置信度排序,可以知道这三个框的置信度从大到小的顺序依次为:1-》2-》3(由于是使用了惩罚,IoU越大,得分越...原创 2019-05-31 11:29:07 · 1393 阅读 · 0 评论 -
解读行人检测文章(1)What Can Help Pedestrian Detection
这篇文章围绕回答这个问题展开:what kind of extra features are effective and how they actually work to improve the CNN-based pedestrian detectors?什么样的额外特征是有效的,以及实际上他们是怎么起作用,如何提升基于CNN的行人检测器。针对行人检测两个问题:1.相比于...原创 2019-06-02 22:12:24 · 424 阅读 · 0 评论 -
小图贴大图(检测的数据增强)
参考:https://blog.csdn.net/u011321546/article/details/795653551.单张图测试:# -*- coding=GBK -*-'''empty classroom picturesjushou imgs:'''import cv2import numpy as npfrom matplotlib import pyplo...原创 2019-06-02 23:38:02 · 1216 阅读 · 0 评论 -
读取coco的单张图的GT
COCO的格式不利于查看,因此下面代码是读取只提取单张图的标注信息:# -*- coding:utf-8 -*-from __future__ import print_functionfrom pycocotools.coco import COCOimport os, sys, zipfileimport urllib.requestimport shutilimport ...原创 2019-06-19 10:40:55 · 898 阅读 · 0 评论 -
Distilling Object Detectors with Fine-grained Feature Imitation的复现
复现基于原文开源代码:https://github.com/twangnh/Distilling-Object-Detectors代码问题和细节可以在我的github讨论:https://github.com/HqWei/Distillation-of-Faster-rcnn这篇文章的本质是对于目标检测在Feature Level的蒸馏的改进,你首先得实现检测的特征图层面的蒸馏,实现起...原创 2019-07-08 11:24:12 · 3797 阅读 · 2 评论 -
Faster RCNN的检测蒸馏(分类、回归、Feature-level、Feature-level+Mask)
The code is heavily borrowed from :1.Distillation for faster rcnn in classification,regression,feature levelhttp://papers.nips.cc/paper/6676-learning-efficient-object-detection-models-with-knowle...原创 2019-07-08 11:37:49 · 2866 阅读 · 1 评论 -
RuntimeError: start (0) + length (0) exceeds dimension size (0).这个错误原因
错误如下:return super(Tensor, self).split(split_size, dim)RuntimeError: start (0) + length (0) exceeds dimension size (0).在pytorch多卡训练时,遇到的bug。感觉在网上没有说清楚的。而我出现这个错误的是因为加入了一批新的数据,而这个报错不告诉你错误在哪一张图,难!...原创 2019-06-27 22:10:58 · 5322 阅读 · 1 评论 -
Revisiting RCNN: On Awakening the Classification Power of Faster RCNN解读
2018ECCV文章,对于faster rcnn 的分类能力的思考:most hard false positives result fromclassification instead of localization.文中说,大部分的FP是分类错误导致的而不是回归(这个观点我持保留意见)。We conjecture that:(1) Shared feature represen...原创 2019-07-15 21:48:44 · 480 阅读 · 0 评论 -
CVPR2019 | Libra R-CNN 论文解读
对应了三个问题:采样的候选区域是否具有代表性? 提取出的不同level的特征是怎么才能真正地充分利用? 目前设计的损失函数能不能引导目标检测器更好地收敛? 对应的三个改进 IoU-balanced Sampling Balanced Feature Pyramid Balanced L1 Loss Balanced L1 Loss:梯度:代码实现...原创 2019-08-06 17:53:59 · 808 阅读 · 0 评论 -
(转)CrowdHuman数据集标注格式odgt转COCO数据集标注格式json(附详细代码)
转自:https://blog.csdn.net/qq_41375609/article/details/95202218import osimport jsonfrom PIL import Imagedef load_file(fpath):#fpath是具体的文件 ,作用:#str to list assert os.path.exists(fpath) #assert...转载 2019-08-25 20:02:13 · 2398 阅读 · 2 评论 -
OHEM的pytorch代码实现细节
详细解读一下OHEM的实现代码:def ohem_loss( batch_size, cls_pred, cls_target, loc_pred, loc_target, smooth_l1_sigma=1.0): """ Arguments: batch_size (int): number of sampled rois for bbox he...原创 2019-04-23 17:05:33 · 6156 阅读 · 4 评论 -
Cityperson标签文件转通用物体检测格式
先在matlab中,将mat格式的标签转换为txt:f= fopen('.\json\val.txt', 'w');load('.\annotations\anno_val.mat');requestNum = length(anno_val_aligned);for i = 1:requestNum cityname=anno_val_aligned{1,i}.c...原创 2019-05-02 21:20:00 · 2406 阅读 · 12 评论 -
Hard Negtive Mining
先要明确:OHEM是Hard Negtive Mining的一种方法。通过loss判断难易程度。在目标检测中,多用效果差的样本进行训练,那提高了整个网络的短板,总体的效果也会有提升。难例挖掘:难例挖掘是指,针对模型训练过程中导致损失值很大的一些样本(使模型很大概率分类错误的样本),重新训练它们。维护一个错误分类样本池, 把每个batch训练数据中的出错率很大的样本放入该样本池中,当...原创 2019-04-26 22:57:43 · 625 阅读 · 0 评论 -
目标检测代码汇总
参考:https://blog.csdn.net/zouxiaolv/article/details/80496796原创 2019-03-01 17:25:15 · 3035 阅读 · 0 评论 -
通俗易懂复现基于tensorflow的SSD:
目录通俗易懂介绍复现基于tensorflow的SSD:I 实现demo,运用训练好的模型进行测试1.首先下载完整的代码:2.下载的文件比较大,因为其中已经包含了一个VGG的模型,解压这个模型:3.我们先试一下SSD的检测效果:II 接下来介绍如果训练:1.下载数据:2.生成TF-Record文件:3.训练通俗易懂介绍复现基于tensorflow的SSD:...原创 2019-02-25 20:52:05 · 1841 阅读 · 4 评论 -
目标检测综述上
本文是参考知乎上的文章做一个简单的总结:https://zhuanlan.zhihu.com/p/40047760https://zhuanlan.zhihu.com/p/40020809这篇博客作为阅读我get到的重点内容总结。首先物体检测发展主要集中在两个方向:two stage算法如R-CNN系列和onestage算法如YOLO、SSD等。两者的主要区别在于two...转载 2019-03-05 16:50:28 · 890 阅读 · 0 评论 -
目标检测综述2
改进网络结构以提升效果DetNet: A Backbone network for Object Detection ECCV2018转载 2019-03-05 22:48:04 · 180 阅读 · 0 评论 -
MAP的计算
在目标检测中都会给定一个IOU阈值,这个阈值的意思是预测的框和标注的框的IOU大于0.5表示物体被检测出来,否则没有。positive_iou_thresh: 0.5 negative_iou_thresh: 0.5 本来是狗检测为狗,为True positives本来是猫检测为狗,为Falsepositive本来是狗预测为猫,为Falsenegative本来是猫...原创 2019-03-08 18:11:58 · 900 阅读 · 0 评论 -
基于pytorch的SSD复现笔记
复现的代码来源于:https://github.com/amdegroot/ssd.pytorch复现的过程按照github的步骤进行:但注意有几个坑:1.首先是数据下载:源码提供了脚本文件,下载数据,里面下载数据用的curl命令,但这个命令需要安装:sudo apt install curl否则报错还不好找错误,也可以使用wget命令下载。两个命令的使用参考:h...原创 2019-03-06 15:51:07 · 7369 阅读 · 28 评论 -
ROI pooling和ROIAlign的解读
参考:https://blog.csdn.net/AUTO1993/article/details/78514071ROI pooling到底在做什么?有两个输入,一个是FeatureMap,一个是ROIs(Region of Interest)。输出是通道数为前面ROI的个数,输出大小为统一的大小。具体操作是根据ROIS提供的候选框坐标,映射到FeatureMap,然后进行max...原创 2019-03-06 22:16:49 · 1554 阅读 · 0 评论 -
人脸检测
人脸数据集大全:https://blog.csdn.net/wfei101/article/details/85523616最新论文汇总:https://blog.csdn.net/qq_33547191/article/details/88407914人脸检测数据库 描述 用途 获取方法 FDDB 2845张图片中的5171张脸 标准人脸检测评测集...原创 2019-03-11 19:02:02 · 269 阅读 · 0 评论 -
人脸检测最新文章汇总(基于深度学习方法)
导言人脸检测是目前所有目标检测子方向中被研究的最充分的问题之一,它在安防监控,人证比对,人机交互,社交和娱乐等方面有很强的应用价值,也是整个人脸识别算法的第一步。在本文中,SIGAI将和大家一起回顾人脸检测算法的整个发展历史。人脸检测综述-来自知乎问题描述人脸检测的目标是找出图像中所有的人脸对应的位置,算法的输出是人脸外接矩形在图像中的坐标,可能还包括姿态如倾斜角度等信息...原创 2019-03-11 20:32:05 · 1274 阅读 · 0 评论 -
人脸检测最新文章解读
1. 京东AI实验室2019CVPR的文章:Improved Selective Refinement Network for Face Detection是我目前看到CVPR2019中检测到人脸最多的方法。这篇文章是在Selective Refinement Network(SRN)基础上的改进,主要使用的策略有: new data augmentation strategy(新...原创 2019-03-11 21:33:33 · 533 阅读 · 0 评论 -
RPN实现细节理解
链接:https://www.zhihu.com/question/42205480/answer/525212289来源:知乎现在过遍训练RPN的流程:1、假设输入的图片是576* 960,经过VGG16生成卷积特征图,缩放16倍,得到36 * 60 *512的特征图,512是通道数2、使用3*3*512的滑窗在特征图滑动(stride=1,padding=2),找到每个三维滑窗的...原创 2019-03-20 17:08:34 · 2610 阅读 · 1 评论 -
Faster RCNN如何结合FPN结构(很多程序成为Faster RCNN+FPN)
参考:https://blog.csdn.net/u012426298/article/details/81516213可以用下面这个图来解释,FPN不是一个完整的目标检测网络,只是一个特征金字塔网络,提到的FPN实际是特征金字塔提取特征,因此Faster RCNN加上FPN的思想,本质上就是改了特征提取部分,因为特征层变多了,因此ROIpooling也增加了。FPN的motiva...原创 2019-03-20 18:05:06 · 19010 阅读 · 4 评论 -
目标检测程序阅读笔记1
enumerate函数:for iter, input in enumerate(test_loader, start_iter):enumerate函数可以带两个参数,后面的参数用于指定索引起始值。list1 = ["这", "是", "一个", "测试"]for index, item in enumerate(list1, 1): print index, it...原创 2019-03-25 20:45:18 · 163 阅读 · 0 评论 -
目标检测目前主要研究点
原创 2019-03-30 13:07:58 · 1338 阅读 · 0 评论 -
在线难例挖掘(OHEM)
OHEM(online hard example miniing)详细解读一下OHEM的实现代码:def ohem_loss( batch_size, cls_pred, cls_target, loc_pred, loc_target, smooth_l1_sigma=1.0): """ Arguments: batch_size (int):...原创 2019-03-23 21:48:32 · 5372 阅读 · 3 评论 -
Faster-RCNN的代码实现以及原理
代码Github链接:https://github.com/jwyang/faster-rcnn.pytorch代码比较好的中文解析:https://blog.csdn.net/weixin_43380510/article/details/83004127Faster R-CNN的实现原理:https://blog.csdn.net/e01528/article/details/7961...原创 2019-02-21 21:56:26 · 3303 阅读 · 0 评论