神经网络模型错误定位及修正:RuntimeError: cuda runtime error (710) : device-side assert triggered

博客内容讲述了在训练模型时遇到loss.backward()报错的问题。经过排查,问题出在模型的最后一层输出维度不匹配数据集中的标签数。通过使用targets.max()方法检查,发现模型原本为11分类,但数据集需要20类分类。修正模型输出层维度后,问题得到解决。强调了在模型搭建时需确保模型结构与数据集一致的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

省流版:优先排查模型最后一层,是不是输出维度小于数据集中的标签数

比如模型最后一层是(512, 10)即⑩分类,而数据集中最大标签大于等于10了(理论上最大为9)

这里可以采用targets.max()的方法来快速检查


报错信息如下所示: 

错误出在loss.backward()这一句上,已经验证过predict和output的维度正确,loss也能正常算出来,因为这句平常用的也比较多不应该是实现问题,优先从自己的模型结构和代码上找问题。

最后发现是加载模型的时候忘记修改输出层维度了,对于数据集中20类目标,模型输出层只有11维,修改后问题解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值