t-SNE 降维可视化方法探索——如何保证相同输入每次得到的图像基本相同?

一、介绍

t-SNE是一种机器学习领域用的比较多的经典降维方法,通常主要是为了将高维数据降维到二维或三维以用于可视化。

PCA 固然能够满足可视化的要求,但是人们发现,如果用 PCA 降维进行可视化,会出现所谓的“拥挤现象”。如下图所示,对于橙、蓝两类数据,如果我们用 PCA 降维后呈现在二维平面上,那么两类数据的边界并不明显,仿佛蓝色的数据“嵌入”了橙色数据一般。而反观右图,蓝色与橙色两类数据明显没有了交集。

更多介绍性内容参考以下链接: 

降维方法之t-SNE - 知乎本文将主要介绍一种机器学习领域用的比较多的经典降维方法: t-SNE。关于这个方法,我也是查阅了许多大佬们写过的文档,但总感觉理解起来还是花了比较长的时间,中间有一些知识大佬们都只是提到,但我还没有学过,…https://zhuanlan.zhihu.com/p/426068503

How to Use t-SNE Effectivelyhttps://distill.pub/2016/misread-tsne/#perplexity=10&epsilon=5&demo=1&demoParams=50,2

二、t-SNE方法使用

需要提前install好一些依赖库,包括sklearn和matplotlib,都是很常用的库此处不再介绍安装和使用。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE


data = np.random.rand(64, 10)  # 64个样本,每个样本维度为10
target = np.arange(8).repeat(8)  # 生成64个标签,用于区分样本目标
t_sne_features = TSNE(n_components=2, learning_rate='auto', init='pca').fit_transform(data)
plt.scatter(x=t_sne_features[:, 0], y=t_sne_features[:, 1], c=target, cmap='jet')
plt.show()

data = np.random.rand(64, 10)  # 64个样本,每个样本维度为10
target = np.arange(8).repeat(8)  # 生成64个标签,用于区分样本目标
t_sne_features = TSNE(n_components=2, learning_rate='auto', init='pca').fit_transform(data)
plt.scatter(x=t_sne_features[:, 0], y=t_sne_features[:, 1], c=target, cmap='jet')
plt.show()

运行后得到下图: 

 由于这里原始数据分布就是random出来的,因此t-SNE后也是随机分布的。这里仅用于说明sklearn库中TSNE方法的使用和图像生成。

对于一些高维有聚类的数据(如神经网络的fc层特征)

 可以看到一些聚类效果

三、参数说明

参数名称     参数含义
n_components嵌入空间的维度
perpexity混乱度,表示t-SNE优化过程当中考虑邻近点的多少,默认为30,建议取值在5到50之间
early_exaggeration表示嵌入空间簇间距的大小,默认为12,该值越大,可视化后的簇间距越大
learning_rate学习率,表示梯度降低的快慢,默认为200,建议取值在10到1000之间
n_iter迭代次数,默认为1000,自定义设置时应保证大于250
min_grad_norm若是梯度小于该值,则中止优化。默认为1e-7
metric表示向量间距离度量的方式,默认是欧氏距离。若是是precomputed,则输入X是计算好的距离矩阵。也能够是自定义的距离度量函数。
init初始化,默认为random。取值为random为随机初始化,取值为pca为利用PCA进行初始化(经常使用),取值为numpy数组时必须shape=(n_samples, n_components)
verbose是否打印优化信息,取值0或1,默认为0=>不打印信息。打印的信息为:近邻点数量、耗时、 σ σ 、KL散度、偏差等
random_state随机数种子,整数或RandomState对象
method两种优化方法:barnets_hutexact。第一种耗时O(NlogN),第二种耗时O(N^2)可是偏差小,同时第二种方法不能用于百万级样本
angle当method=barnets_hut时,该参数有用,用于均衡效率与偏差,默认值为0.5,该值越大,效率越高&偏差越大,不然反之。当该值在0.2-0.8之间时,无变化。

四、确保对于相同输入得到的图像相同方法

这也是记录本篇博客的核心原因。

由于需要在多次生成TSNE中对比效果,就需要保证对于相同输入tSNE生成的图像也基本分布一致。按照大部分网上资源的方法,最后的图虽然整体有序,但 对于同样的数据输入tSNE结果存在较大差异 ,比如相邻关系不变,但位置或者角度存在差异,大概情况如下图(举个例子说明):

经过查阅官方文档参数意义以及多次尝试,发现最影响t-SNE图像的是随机数种子(也可以将其理解为是t-SNE训练的初始化情况,事实上t-SNE也是一种迭代训练的过程),对应接口函数中的参数为

random_state

随机数种子,整数或RandomState对象

因此,只需要在代码中指定random_state的值(如设定成2022)即可保证对于相同数据的降维情况一致,用于后续实验效果对比。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE


data = np.random.rand(64, 10)  # 64个样本,每个样本维度为10
target = np.arange(8).repeat(8)  # 生成64个标签,用于区分样本目标
t_sne_features = TSNE(n_components=2, learning_rate='auto', init='pca', random_state=2022).fit_transform(data)
plt.scatter(x=t_sne_features[:, 0], y=t_sne_features[:, 1], c=target, cmap='jet')
plt.show()

t_sne_features = TSNE(n_components=2, learning_rate='auto', init='pca', random_state=2022).fit_transform(data)
plt.scatter(x=t_sne_features[:, 0], y=t_sne_features[:, 1], c=target, cmap='jet')
plt.show()
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值