显卡型号支持查询:https://developer.nvidia.com/cuda-gpus
Tensorflow不同版本要求与CUDA及CUDNN版本对应关系:https://blog.csdn.net/omodao1/article/details/83241074
下载cuda,官网下载即可。 目前这种方式是最靠谱的。https://developer.nvidia.com/cuda-downloads
安装cuDNN下面是下载地址,需要提前注册。 注册一下就好。注意下载的版本。https://developer.nvidia.com/rdp/cudnn-download
Copy CuDNN files to Nvidia CUDA toolkit folder when 2. has completed (usually is located on C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0)
- copy cudnn\bin\cudnn64_5.dll to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin\
- copy cudnn\include\cudnn.h to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include\
- copy cudnn\lib\x64\cudnn.lib to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\
在PATH中,添加 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin
以及解压出的cudnn文件中bin的目录C:\tools\cuda\bin
- download and install these packages via pip (move to the directory where they were downloaded, open a command prompt and make 'pip install package_name')
- numpy+mkl (http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy)
- download numpy‑1.12.1+mkl‑cp35‑cp35m‑win_amd64.whl
- pip install numpy‑1.12.1+mkl‑cp35‑cp35m‑win_amd64.whl
- scipy (http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy)
- download scipy‑0.19.0‑cp35‑cp35m‑win_amd64.whl
- pip install scipy‑0.19.0‑cp35‑cp35m‑win_amd64.whl
- numpy+mkl (http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy)
- open command prompt and make 'pip install matplotlib'