Spark结构化API—DataFrame,SQL和Dataset

Spark 专栏收录该内容
9 篇文章 4 订阅

一、结构化API概述

1. 结构化API是处理各种数据类型的工具,可处理非结构化的日志文件、半结构化的CSV文件以及高度结构化的Parquet文件。结构化API指以下三种核心分布式集合类型的API:Dataset类型、DataFrame类型、SQL表和视图。

大多数结构化API均适用于批处理和流处理,这意味着使用结构化API编写代码时,几乎不用改动代码就可以从批处理程序转换为流处理程序(反之亦然)。

DataFrame和Dataset是具有行和列的类似于(分布式)数据表的集合类型。所有列的行数相同(可以使用null来指定缺省值),并且某一列的类型必须在所有行中保持一致。Spark中的DataFrame和Dataset代表不可变的数据集合,可以通过它指定对特定位置数据的操作,该操作将以惰性评估方式执行。当对DataFrame执行action操作时,将触发Spark执行具体transformation操作并返回结果。表和视图与DataFrame基本相同,所以通常在DataFrame上执行SQL操作,而不是用DataFrame专用的Scala代码。

Schema定义了DataFrame的列名和类型,可以手动定义或者从数据源读取模式(通常定义为模式读取)。Schema数据模式需要指定数据类型,这意味着用户需要指定在什么地方放置什么类型的数据。

2. Spark实际上有它自己的编程语言,Spark内部使用一个名为Catalyst的引擎,在计划制定和执行作业的过程中使用Catalyst来维护它自己的类型信息,这样就会带来很大的优化空间,这些优化可以显著提高性能。Spark类型直接映射到不同语言API,并且针对Scala、Java、Python、SQL和R语言,都有一个对应的API查找表,即使通过Python或R语言来使用Spark结构化API,大多数情况下也是操作Spark类型而非Python类型。例如,以下代码不会在Scala或Python中执行加法,而实际上完全是在Spark中执行加法:

// in Scala
val df = spark.range(500).toDF("number")
df.select(df.col("number") + 10)

# in Python
df = spark.range(500).toDF("number")
df.select(df["number"] + 10)

加法操作这样执行,是因为Spark会将用输入语言编写的表达式转换为代表相同功能的Spark内部Catalyst表示然后它将根据该内部表示进行操作。在讨论为什么会出现这种情况之前,先来讨论Dataset类型。

3. 实质上,结构化API包含两类API,即非类型化的DataFrame和类型化的Dataset。DataFrame是无类型的可能不太准确,因为它其实是有类型的,只是Spark完全负责维护它的类型,仅在运行时检查这些类型是否与schema中指定的类型一致。而Dataset在编译时就会检查类型是否符合规范。Dataset仅适用于基于Java虚拟机(JVM)的语言(比如Scala和Java),并通过case类或Java beans指定类型

因此在大多数情况下会使用DataFrame。Scala版本的Spark中, DataFrame就是一些Row类型的Dataset的集合。“Row”类型是Spark用于支持内存计算而优化的数据格式。这种格式利于高效计算,因为它避免使用会带来昂贵垃圾回收开销和对象实例化开销的JVM类型,而是基于自己的内部格式运行,所以并不会产生这种开销。Python版本和R语言版本的Spark并不支持Dataset,所有东西都是DataFrame。

4. DataFrame中的每条记录都必须是Row类型。可以通过SQL手动创建、或者RDD提取、或从数据源手动创建这些行。下面的示例使用范围函数range()来创建一个row对象的数组,

spark.range(2).toDF().collect()

接下来讨论一下如何实例化一个列为特定类型。通过以下方法可以使用正确的Scala类型:

import org.apache.spark.sql.types._
val b = ByteType

利用如下的工厂方法来使用正确的Java类型:

import org.apache.spark.sql.types.DataTypes; 
ByteType x = DataTypes.ByteType;

5. 针对一个结构化API查询任务,从用户代码到执行代码的过程步骤如下:

(1)编写DataFrame / Dataset / SQL代码。

(2)如果代码能有效执行,Spark将其转换为一个逻辑执行计划(Logical Plan)。

(3)Spark将此逻辑执行计划转化为一个物理执行计划(Physical Plan),并检查可行的优化策略,并在此过程中检查优化

(4)然后,Spark在集群上执行该物理执行计划(RDD操作)。

用户编写的代码通过控制台提交给Spark,或者以一个Spark作业的形式提交。然后代码将交由Catalyst优化器决定如何执行,并指定一个执行计划。最后代码将被运行,得到的结果将返回给用户,如下图所示:

从上面步骤可以看到,job执行的第一阶段旨在获取用户代码并将其转换为逻辑计划,该过程如下图所示:

这个逻辑计划仅代表一组抽象转换,还不涉及executor或driver,它只是将用户的表达式集合转换为最优的版本,它通过将用户代码转换为未解析的逻辑计划来实现这一点。这个计划没有解析,因为虽然用户代码可能是有效的,但它涉及的表或列可能存在也可能不存在。

Spark使用catalog(所有表和DataFrame信息的存储库)来在分析器analyzer中解析(resolve)列和表格。如果目录中不存在所需的表或列名称,分析器可能会拒绝该未解析的逻辑计划如果分析器可以解析它,结果将通过Catalyst优化器(Catalyst Optimizer),尝试通过谓词下推或选择操作来优化逻辑计划。用户也可以在定制源码时,扩展Catalyst优化器来支持自己特定的优化策略。

6. 在成功创建优化的逻辑计划后,Spark开始执行物理计划流程。物理计划(通常称为Spark计划)通过生成不同的物理执行策略,并通过代价模型进行比较分析,从而指定如何在集群上执行逻辑计划,具体流程如下图所示:

例如执行一个join操作就会涉及到代价比较,它通过分析数据表的物理属性(表的大小或分区的大小),对不同的物理执行策略进行代价比较,选择合适的物理执行计划。物理计划产生一系列的RDD和transformation操作这就是Spark被称为编译器的原因,因为它将DataFrame、Dataset和SQL中的查询操作编译为一系列RDD转换操作。在选择一个物理计划时,Spark将所有代码运行在底层编程接口RDD上,Spark在运行时执行进一步优化,生成可以在执行期间优化task或stage的本地Java字节码,最终将结果返回给用户。

二、基本的结构化操作

7. DataFrame由记录(record)组成,record是Row类型(与table中的一行相似)。一条record由多列(column)组成(类似于表格中的列)。模式(schema)定义了DataFrame列的名称以及列的数据类型。DataFrame的分区(partition)定义了DataFrame以及Dataset在集群上的物理分布,而分区模式(partitioning schema)定义了partition的分配方式,用户可以自定义分区的方式,也可以采取随机分区的方式。下面为一个DataFrame创建示例:

val df = spark.read.format("json")
    .load("/data/flight-data/json/2015-summary.json")

DataFrame有很多列,而模式(schema)定义了这些列的名字和数据类型。可以用下面的方法查询DataFrame的模式:

df.printSchema()

schema可以选择根据数据源来自动定义模式(称为读时模式schema-on-read),也可以选择由用户自己来显式地定义表的schema。实际应用场景决定了定义Schema的方式。当应用于即席分析(adhoc analysis)时,使用读时模式即可(尽管在处理如CSV和JSON等纯文本文件时速度较慢)。

但是读时模式也可能导致数据精度损失问题,例如在文件中读取时,将long型错误地解析为整数。当使用Spark进行实现生产级别ETL的时候,最好采取手动显式定义Schema的方式,尤其是在处理诸如CSV和JSON之类的无类型数据源时,这是因为模式推断(schema inference)方法会根据读入数据类型的不同而不同。

下面的例子利用行分隔的JSON半结构化性质来定义这个结构。数据集是来自美国交通局的航班统计数据:

spark.read.format("json").load("/data/flight-data/json/2015-summary.json").schema

会返回以下内容:

org.apache.spark.sql.types.StructType = ...
StructType(StructField(DEST_COUNTRY_NAME,StringType,true),
StructField(ORIGIN_COUNTRY_NAME,StringType,true),
StructField(count,LongType,true))

一个schema是由许多字段构成的StructType,这些字段即为StructField,它具有名称、类型、布尔标志(该标志指定该列是否可以包含缺失值或空值),并且用户可指定与该列关联的元数据(metadata)。元数据存储着有关此列的信息(Spark在其机器学习库中使用此功能)。模式还包含其他的StructType(Spark的复杂类型)。如果(在运行时)数据的类型与定义的schema模式不匹配,Spark将抛出一个错误。以下示例显示了如何为一个DataFrame创建并指定模式:

import org.apache.spark.sql.types.{StructField, StructType, StringType, LongType}
import org.apache.spark.sql.types.Metadata

val myManualSchema =StructType(Array(
    StructField("DEST_COUNTRY_NAME", StringType, true),
    StructField("ORIGIN_COUNTRY_NAME", StringType, true),
    StructField("count", LongType, false,
    Metadata.fromJson("{\"hello\":\"world\"}"))
))
val df = spark.read.format("json").schema(myManualSchema)
    .load("/data/flight-data/json/2015-summary.json")

8. 因为Spark会维护它自己的类型信息,所以不能简单地通过每种语言的类型来设置类型。接下来看看schema定义的列,Spark可以对DataFrame中的列进行选择、transformation操作和删除,并将这些操作表示为表达式。有很多不同的方法来构造和引用列,两个最简单的方法是通过col函数或column函数。使用这两个函数,需要传入列名:

import org.apache.spark.sql.functions.{col, column}
col("someColumnName")
column("someColumnName")

DataFrame可能不包含某列,所以该列要将列名与catalog中维护的列名相比较之后才会确定该列是否会被解析。上面提到过,列和数据表的解析在分析器(analyzer)阶段发生。Scala中有一些特有的语言支持,可以使用更多简短的方式来引用列,下面的Scala表达式也执行引用列的功能,但不会提升性能:

$"myColumn"
'myColumn

符号“$”将字符串指定为表达式,而符号(')指定一个symbol,是Scala引用标识符的特殊结构。它们都执行相同的功能,即通过列名引用列的简写方式。如果需要引用某DataFrame的某一列,则可以在这个DataFrame上使用col方法。当执行连接(Join)操作时,如果两个join的DataFrame存在一个同名列,该方法会非常有用。显式引用列的另一个好处就是Spark不用自己解析该列(在分析阶段),如下所示:

df.col("count")

列其实就是表达式,但什么是表达式?expression是对一个DataFrame中某一个记录的一至多个值的一组transformation操作。可以把它想象成一个函数,它将一个或多个列名作为输入,解析它们,然后针对数据集中的每条记录应用表达式来得到一个单值。这个“单值”实际上可以是一个复杂的类型,如Map或Array。在最简单的情况下,通过expr函数创建的表达式,仅仅是一个DataFrame列的引用,也就是说expr("someCol")等同于col("someCol")

9. 列提供了表达式功能的一个子集。如果使用col(),并想对该列执行transformation操作,则必须对该列的引用执行这些transformation操作。当使用表达式时,expr函数实际上可以将字符串解析成转换操作和列引用,也可以在之后将其传递到下一步的转换操作,来看下面的例子:

expr("someCol -5")
col("someCol") -5
expr("someCol") –5

它们都是相同的transformation操作。Spark将它们编译为表示操作顺序的逻辑树。要记住下面两点:

(1)在Spark看来,列只是表达式。

(2)列与对这些列的transformation操作被编译后生成的逻辑计划,与解析后的表达式的逻辑计划是一样的。

用一个例子来说明这一点:

(((col("someCol") + 5) * 200) -6) < col("otherCol")

逻辑树是一种有向无环图,该图等同于以下代码:

import org.apache.spark.sql.functions.expr
expr("(((someCol + 5) * 200) -6) < otherCol")

这里需要强调,上面的表达式是有效SQL代码,就像SELECT表达式。这是因为SQL与DataFrame代码在执行之前会变编译成相同的底层逻辑树。这意味着SQL表达式和DataFrame代码的性能是一样的。如果想在程序中访问列,可以使用属性columns查询DataFrame的所有列:

spark.read.format("json").load("/data/flight-data/json/2015-summary.json").columns

10. 在Spark中,DataFrame的每一行都是一个记录(Record),而记录是Row类型的对象。Spark使用列表达式操纵Row类型对象,Row对象内部其实是字节数组,但是Spark没有提供访问这些数组的接口,因此只能使用列表达式去操纵。可以通过在DataFrame上调用first()来查看一行:

df.first()

可以基于已知的每列的数值去手动实例化一个Row对象来创建行。需要注意的是,只有DataFrame具有模式(schema),行对象本身没有模式,这意味着如果手动创建Row对象,则必须按照该行所属的DataFrame的列顺序来初始化Row对象:

import org.apache.spark.sql.Row
val myRow = Row("Hello", null, 1, false)

访问行的数据也同样简单:只需指定想要的位置。使用Scala或Java时,必须使用辅助方法或显式地指定值类型,而使用Python或者R时,该值将被自动转化为正确的类型,如下所示:

// in Scala
myRow(0) // 任意类型
myRow(0).asInstanceOf[String] // 字符串
myRow.getString(0) // 字符串
myRow.getInt(2) // 整型

# in Python
myRow[0]
myRow[2]

11. 处理DataFrame对象时通常涉及几个基本目标,可以被归纳为如下几个核心操作:

(1)添加行或列;

(2)删除行或列;

(3)将一行转换操作为一列(或者将一列转换操作为一行);

(4)根据列中的值更改行的顺序;

可以把所有的这些操作转化成简单的transformation操作,最常见的是取一列逐行更改,然后返回结果。正如之前所见,可以从原始数据源中创建DataFrame,如下所示:

val df = spark.read.format("json")
    .load("/data/flight-data/json/2015-summary.json")
df.createOrReplaceTempView("dfTable")

也可以通过获取一组行并将它们转换操作为一个DataFrame来即时创建DataFrame,如下所示:

import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{StructField, StructType,StringType, LongType}
val myManualSchema = new StructType(Array(
    new StructField("some", StringType, true),
    new StructField("col", StringType, true),
    new StructField("names", LongType, false)))
val myRows = Seq(Row("Hello", null, 1L))
val myRDD = spark.sparkContext.parallelize(myRows)
val myDf = spark.createDataFrame(myRDD, myManualSchema)
myDf.show()

上面代码的结果如下所示:

在Scala中,还能还可以利用Spark的隐式方法(使用implicit关键字),对Seq类型执行toDF函数来实现,由于对于null类型的支持并不稳定,所以这种方法并不推荐在实际生产中使用,如下所示:

val myDF = Seq(("Hello", 2, 1L)).toDF("col1", "col2", "col3")

12. 接下来看看DataFrame类型支持的最有用的方法:处理列或表达式时的select方法,以及处理字符串表达式时的selectExpr方法。当然有的转换操作不是针对列的操作方法,因此org.apache.spark.sql.functions包中包含一组函数方法用来提供额外支持。select和selectExpr函数支持在DataFrame上执行类似数据表的SQL查询:

SELECT * FROM dataFrameTable
SELECT columnName FROM dataFrameTable
SELECT columnName * 10, otherColumn, someOtherCol as c FROMdataFrameTable

简单来说就是,可以使用select和selectExpr来操作DataFrame中的列。最简单的方式就是使用select方法,待处理的列名作为参数传递进来:

// in Scala
df.select("DEST_COUNTRY_NAME", "ORIGIN_COUNTRY_NAME").show(2)

--in SQL
SELECT DEST_COUNTRY_NAME, ORIGIN_COUNTRY_NAME FROM dfTable LIMIT 2

上述语句输出结果为:

当然,也可以通过多种不同的方式引用列,而且这些方式可以等价互换:

import org.apache.spark.sql.functions.{expr, col, column}
df.select(
    df.col("DEST_COUNTRY_NAME"),
    col("DEST_COUNTRY_NAME"),
    column("DEST_COUNTRY_NAME"),
    'DEST_COUNTRY_NAME,
    $"DEST_COUNTRY_NAME",
    expr("DEST_COUNTRY_NAME"))
  .show(2)

一个常见的错误是混淆Column对象和字符串。例如,以下代码将导致编译错误:

df.select(col("DEST_COUNTRY_NAME"), "DEST_COUNTRY_NAME")

expr是目前使用到的最灵活的引用方式,它能够引用一列,也可以引用对列进行操纵的字符串表达式。为了说明这一点,先更改列名,然后使用AS关键字和列上的alias方法将名字重新改回去:

// in Scala
df.select(expr("DEST_COUNTRY_NAME AS destination")).show(2)

--in SQL
SELECT DEST_COUNTRY_NAME as destination FROM dfTable LIMIT 2

因为select后跟着一系列expr是非常常见的写法,所以Spark有一个有效地描述此操作序列的接口:selectExpr,它可能是最常用的接口:

df.selectExpr("DEST_COUNTRY_NAME as newColumnName", "DEST_COUNTRY_NAME").show(2)

这是Spark最强大的地方,可以利用selectExpr构建复杂表达式来创建DataFrame。实际上,可以添加任何不包含聚合操作的有效SQL语句,并且只要列可以解析,它就是有效的。下面是一个简单的例子,在DataFrame中增加一个新列withinCountry,该列描述了destination和origin是否相同:

df.selectExpr(
    "*", // 包含所有原始表中的列
    "(DEST_COUNTRY_NAME = ORIGIN_COUNTRY_NAME) as withinCountry")
  .show(2)

该语句的输出结果为:

使用select语句,还可以利用系统预定义好的聚合函数来指定在整个DataFrame上的聚合操作,如下面所展示的代码示例:

df.selectExpr("avg(count)", "count(distinct(DEST_COUNTRY_NAME))").show(2)

该语句的结果为:

13. 有时候需要给Spark传递显式的值,它们只是一个值而非新列,这可能是一个常量值,或接下来需要比较的值。可以通过字面量(literal)传递,简单来说就是从给定编程语言的字面值转换操作为Spark可以理解的值。字面量就是表达式,可以用操作表达式的方式来使用它们

import org.apache.spark.sql.functions.lit
df.select(expr("*"), lit(1).as("One")).show(2)

在SQL中,字面量只是特定的值:

SELECT *, 1 as One FROM dfTable LIMIT 2

这两个语句的输出结果为:

使用WithColumn可以为DataFrame增加新列,例如添加一个仅包含数字1的列:

// in Scala
df.withColumn("numberOne", lit(1)).show(2)

--in SQL
SELECT *, 1 as numberOne FROM dfTable LIMIT 2

该语句的输出如下所示:

来接触一下实际的表达式。在下一个示例中,当出发国家与目的地国家相同时,为其设置一个布尔标志:

df.withColumn("withinCountry", expr("ORIGIN_COUNTRY_NAME == DEST_COUNTRY_NAME"))
  .show(2)

withColumn函数有两个参数,分别是列名和为给定行赋值的表达式。也可以用WithColumn对某一列重命名,如下所示:

df.withColumn("Destination", expr("DEST_COUNTRY_NAME")).columns

修改后的结果为:

... DEST_COUNTRY_NAME, ORIGIN_COUNTRY_NAME, count, Destination

14. 不仅可以使用WithColumn对列重命名,还可以使用WithColumnRenamed方法实现对列重命名。WithColumnRenamed中,第一个参数是要被修改的列的名,第二个参数是新的列名:

df.withColumnRenamed("DEST_COUNTRY_NAME", "dest").columns

... dest, ORIGIN_COUNTRY_NAME, count  //改动后结果

可能还会遇到列名中包含空格或者连字符等保留字符,要处理这些保留字符意味着要适当的对列名进行转义。在Spark中,通过使用反引号(`)字符来实现关键字等保留字符转义。withColumn是一个允许使用保留字来创建列的方法。接下来展示两个示例—在第一个示例中不需要转义字符,但在第二个中会用到:

import org.apache.spark.sql.functions.expr
val dfWithLongColName = df.withColumn(
    "This Long Column-Name",
    expr("ORIGIN_COUNTRY_NAME"))

这里不需要转义字符,因为withColumn的第一个参数只是新列名的字符串。但在下面这个例子中,需要使用反引号,因为在expr表达式中引用了一个列

//in Scala
dfWithLongColName.selectExpr(
    "`This Long Column-Name`",
    "`This Long Column-Name` as `new col`")
  .show(2)

--in SQL
SELECT `This Long Column-Name`, `This Long Column-Name` as `new col`
FROM dfTableLong LIMIT 2

如果显式地使用字符串来引用列,则可以引用带有保留字符的类(而不用转义它们),这个字符串会被解释成字面值而不是表达式,只需要转义使用保留字符或者关键字的表达式。下面两个例子会产生相同的DataFrame:

// in Scala
dfWithLongColName.select(col("This Long Column-Name")).columns

# in Python
dfWithLongColName.select(expr("`This Long Column-Name`")).columns

15.从DataFrame中删除一至多个列可以使用drop方法,如下所示:

dfWithLongColName.drop("ORIGIN_COUNTRY_NAME", "DEST_COUNTRY_NAME")

可以通过更改列的类型来转换数据类型。例如,下面将count列从integer整型转换操作成Long:

//in Scala
df.withColumn("count2", col("count").cast("long"))

--in SQL
SELECT *, cast(count as long) AS count2 FROM dfTable

为了过滤行,只要创建一个表达式判断该表达是true还是false,然后过滤使表达式为false的行。在DataFrame上实现过滤操作最常见的两种方式分别是where和filter,它们可以执行相同的操作,接受相同参数类型,如下面的例子所示:

df.filter(col("count") < 2).show(2)
df.where("count < 2").show(2)

--in SQL
SELECT * FROM dfTable WHERE count < 2 LIMIT 2

输出结果为:

想把多个过滤条件放到一个表达式中的方式,并不总是有效。因为Spark会同时执行所有过滤操作,而不管过滤条件的先后顺序。因此想指定多个AND过滤操作时,只要按照先后顺序以链式的方式把些过滤条件串联起来,然后让Spark执行剩下的工作:

// in Scala
df.where(col("count") < 2).where(col("ORIGIN_COUNTRY_NAME") =!= "Croatia")
.show(2)

--in SQL
SELECT * FROM dfTable WHERE count < 2 AND ORIGIN_COUNTRY_NAME != "Croatia"
LIMIT 2

这样的输出结果为:

还有一个常见的应用场景是去除DataFrame中重复的行,这可以去除一列或者多列中重复的值。实现去重的方式之一是使用DataFrame的distinct方法,它能够对DataFrame中的行进行去重操作。例如,从数据集中找出所有不同的出发国家-目的地国家组合或者所有不同的出发国家,这是一个transformation操作,它将返回去重后的DataFrame:

// in Scala
df.select("ORIGIN_COUNTRY_NAME", "DEST_COUNTRY_NAME").distinct().count()

--in SQL
SELECT COUNT(DISTINCT(ORIGIN_COUNTRY_NAME, DEST_COUNTRY_NAME)) FROM dfTable

但是从去重性能优化的角度上考虑,不建议使用count distinct,建议使用count … group by,因为distinct需要将列中的所有内容都加载到内存中,大致可以理解为一个hash结构,key自然就是列中的所有值。因为是hash结构,那运算速度自然就快。最后计算hash中有多少key就是最终的结果。但在海量数据环境下,将所有值都存起来的内存消耗,可能会导致OOM。

而group by的实现方式是先将列排序,对于快速排序算法来说时间复杂度为O(nlogn),而空间复杂度只有O(1)。这样一来即使数据量再大一些,group by基本也扛得住。但是因为需要做一次排序,所以时间上会相对慢一点点。所以count(distinct)吃内存,查询快;而group by空间复杂度小,在时间复杂度允许的情况下,可以发挥它的空间复杂度优势。

16. 有时想从DataFrame中随机抽取一些记录,可以使用sample方法来实现此操作,它按一定比例从DataFrame中随机抽取一部分行,可以通过withReplacement参数指定是否放回抽样,true为有放回的抽样(可以有重复样本),false为无放回的抽样(无重复样本):

val seed = 5
val withReplacement = false
val fraction = 0.5
df.sample(withReplacement, fraction, seed).count()

当需要将原始DataFrame随机分割成多个分片时,可以使用随机分割。这通常是在机器学习算法中,用于分割数据集来创建训练集、验证集和测试集。在下一个示例中,要设置分割比例(随机分割函数的参数)来将DataFrame分割成两个不同的DataFrame。由于随机分割是一种随机方法,所以还需要指定一个随机seed。需要注意的是,如果一个DataFrame的分割比例的和不为1,则比例参数会被自动归一化:

val dataFrames = df.randomSplit(Array(0.25, 0.75), seed)
dataFrames(0).count() > dataFrames(1).count() // 结果为False

17. DataFrame是不可变的,这意味着用户不能向DataFrame追加行。如果想要向DataFrame追加行,必须将原始的DataFrame与新的DataFrame联合起来,即union操作,但必须确保它们具有相同的schema和列数,否则union操作将会失败。目前union是基于位置而不是基于数据模式schema执行,也就是说它并不会自动根据列名匹配对齐后再进行union,所以两个联合的DataFrame需要具有完全相同的模式和列数,如下所示:

import org.apache.spark.sql.Row
val schema = df.schema
val newRows = Seq(
    Row("New Country", "Other Country", 5L),
    Row("New Country 2", "Other Country 3", 1L)
)
val parallelizedRows = spark.sparkContext.parallelize(newRows)
val newDF = spark.createDataFrame(parallelizedRows, schema)
df.union(newDF)
  .where("count = 1")
  .where($"ORIGIN_COUNTRY_NAME" =!= "United States")
  .show() // get all of them and we'll see our new rows at the end

在Scala中需要使用“=!=”运算符,这是因为它不仅能比较字符串,也能够比较表达式,语句的输出结果如下:

当对DataFrame中的值进行排序时,通常是想要获得DataFrame里的一些最大值或者最小值。sort和orderBy方法是相互等价的操作,执行的方式也一样。它们均接收列表达式和字符串,以及多个列。默认设置是按升序排序:

df.sort("count").show(5)
df.orderBy("count", "DEST_COUNTRY_NAME").show(5)
df.orderBy(col("count"), col("DEST_COUNTRY_NAME")).show(5)

若要更明确地指定升序或是降序,则需使用asc函数和desc函数:

// in Scala
import org.apache.spark.sql.functions.{desc, asc}
df.orderBy(expr("count desc")).show(2)
df.orderBy(desc("count"), asc("DEST_COUNTRY_NAME")).show(2)

--in SQL
SELECT * FROM dfTable ORDER BY count DESC, DEST_COUNTRY_NAME ASC LIMIT 2

一个高级技巧是可以指定空值在排序列表中的位置,使用asc_nulls_firs指示空值安排在升序排列的前面,使用desc_nulls_firs指示空值安排在降序排列的前面,使用asc_nulls_last指示空值安排在升序排列的后面,使用desc_nulls_last指示空值安排在降序排列的后面。

出于性能优化的目的,最好是在进行别的转换之前,先对每个分区进行内部排序。可以使用sortWithinPartitions方法实现这一操作:

spark.read.format("json").load("/data/flight-data/json/*-summary.json")
     .sortWithinPartitions("count")

18. 另一个重要的优化是根据一些经常过滤的列对数据进行分区,控制跨集群数据的物理布局,包括分区方案和分区数。不管是否有必要,重新分区都会导致数据的全面shuffle。如果将来的分区数大于当前的分区数,或者想要基于某一组特定列来进行分区时,通常只能重新分区:

df.rdd.getNumPartitions // 1
df.repartition(5)

如果知道要经常按某一列执行过滤操作,则根据该列进行重新分区是很有必要的

df.repartition(col("DEST_COUNTRY_NAME"))

而另一方面,合并操作(coalesce)不会导致数据的全面shuffle,但会尝试合并分区。下面的示例代码将基于目的地国家名的列将数据重新划分成5个分区,然后再合并它们(没有导致数据全面shuffle):

df.repartition(5, col("DEST_COUNTRY_NAME")).coalesce(2)

但是如果是要减少小文件的数量,将很多个父RDD或父DataFrame的分区数急剧减少,这时候就不要直接用coalesce()而应该用repartition(),因为Spark源码中repartition()的实现其实就是coalesce(numOfPartitions, true),即支持shuffle的coalesce(),只用coalesce(numOfPartitions)则不会发生shuffle操作,如果括号内设置的numOfPartitions参数太少,会导致实际运行计算的节点过少,从而导致如下报错:

java.io.IOException: Unable to acquire 16777216 bytes of memory

这个报错只要设置coalesce()里是否shuffle的参数为true时就能消除。如果要把父RDD的分区数增大,如果coalesce()的是否shuffle设置为false,则增大分区数并不会起作用,这时候就必须设置是否shuffle为true了,这样父RDD才会在shuffle之后返回一个更多分区的RDD,数据分区方式默认是采用 Hash Partitioner。因此一般都建议用repartition()替代coalesce()

19. Spark的driver维护着集群状态,有时候需要让driver收集一些数据到本地,这样可以在本地机器上处理它们。下面的代码示例使用collect函数从整个DataFrame中获取所有数据,使用take函数选择前N行,并使用show函数打印一些行:

val collectDF = df.limit(10)
collectDF.take(5) // 获取整数行
collectDF.show() // 更友好的打印
collectDF.show(5, false)
collectDF.collect()

为了遍历整个数据集,还有一种让driver获取行的方法,即toLocalIterator()函数。toLocalIterator函数是一个迭代器,将每个分区的数据返回给driver。这个函数允许以串行的方式一个个分区地迭代整个数据集:

collectDF.toLocalIterator()

但是一般情况下应该避免collect()和toLocalIterator()等数据全部拉取到driver的操作,当数据集很大时可能会导致driver端OOM。

三、处理不同的数据类型

20. 在源码中,DataFrame本质上就是一个Row类型的Dataset所以最终查看的就是Dataset的方法。Dataset的子模块如DataFrameStatFunctions和DataFrameNaFunctions有更多解决具体问题的方法,例如DataFrameStatFunctions包含许多统计相关的函数,而DataFrameNaFunctions包含处理空值相关的函数。

org.apache.spark.sql.functions包含针对一系列不同数据类型的各种函数方法。因为这些函数方法经常被用到,所以这个包经常被整个导入代码中。可以在这里找到SQL和DataFrame 的函数方法。

上述这么多的函数方法会感觉茫然无措,但是不必担心,因为大部分函数可以在SQL和解析系统中找到。这些工具都是将一种数据格式或结构的数据行转换为另一种数据格式或结构的数据行,可能会导致行数的增减。首先读取例子数据以便后续的分析使用:

val df = spark.read.format("csv")
    .option("header","true")
    .option("inferSchema","true")
    .load("/data/retail-data/by-day/2010-12-01.csv")
df.printSchema()
df.createOrReplaceTempView("dfTable")

以下是结果和一小部分数据示例:

要做的一件事是将原始类型转换成Spark类型,要使用lit函数来实现这一点,该函数将其他语言的类型转换为与其相对应的Spark表示,下面将几种不同类型的Scala和Python值转换为对应的Spark类型数据:

// in Scala
import org.apache.spark.sql.functions.lit
df.select(lit(5),lit("five"),lit(5.0))

# in Python
from pyspark.sql.functions import lit
df.select(lit(5),lit("five"),lit(5.0))

21. 接下来基于上面导入的零售数据来说明处理布尔类型的方法,可以在其中指定等于、小于、或大于:

import org.apache.spark.sql.functions.col
df.where(col("InvoiceNo").equalTo(536365))
  .select("InvoiceNo","Description")
  .show(5,false)

Scala有一些关于==和===用法的特殊语义。在Spark中,如果想通过相等条件来进行过滤,应该使用===(等于)或者=!=(不等于)符号,还可以使用not函数和equalTo方法来实现,如下所示:

import org.apache.spark.sql.functions.col
df.where(col("InvoiceNo") =!= 536365)
  .select("InvoiceNo","Description")
  .show(5,false)

输出结果如下所示:

另外一种方法是使用字符串形式的谓词表达式(可能是最简洁的方法),Python或Scala支持这种方法。这里使用了另一种表达“不等于”的方法:

df.where("InvoiceNo = 536365")
  .show(5,false)
df.where("InvoiceNo <> 536365")
  .show(5,false)

之前提到可以使用and或者or将多个Boolean表达式连起来。但是Spark中,最好是以链式连接的方式组合起来,形成顺序执行的过滤器。这样做的原因是因为即使Boolean语句是一个接一个顺序表达的,Spark也会将所有这些过滤器合并为一条语句,并同时执行这些过滤器,创建and语句。虽然说可以在语句中显式地使用and,但如果将它们串起来就更容易理解和阅读。or语句需要在同一语句中指定:

//in Scala
val priceFilter = col("UnitPrice") > 600
val descripFilter = col("Description").contains("POSTAGE")
df.where(col("StockCode").isin("DOT")).where(priceFilter.or(descripFilter))
  .show()

--in SQL
SELECT * FROM dfTable WHERE StockCode in ("DOT") AND(UnitPrice > 600 OR
instr(Description,"POSTAGE") >= 1)

输出结果如下所示:

过滤器不一定非要使用Boolean表达式,要过滤DataFrame,也可以删掉指定一个Boolean布尔类型的:

//in Scala
val DOTCodeFilter = col("StockCode") === "DOT"
val priceFilter = col("UnitPrice") > 600
val descripFilter = col("Description").contains("POSTAGE")
df.withColumn("isExpensive",DOTCodeFilter.and(priceFilter.or(descripFilter)))
  .where("isExpensive")
  .select("unitPrice","isExpensive").show(5)

--in SQL
SELECT UnitPrice,(StockCode = 'DOT' AND
(UnitPrice > 600 OR instr(Description,"POSTAGE") >= 1)) as isExpensive
FROM dfTable
WHERE (StockCode = 'DOT' AND
(UnitPrice > 600 OR instr(Description,"POSTAGE") >= 1))

注意并没有将过滤器设置为一条语句,使用一个列名无需其他工作就可以实现。实际上,将过滤器表示为SQL语句比使用编程式的DataFrame接口更简单,同时Spark SQL实现这点并不会造成性能下降。例如,以下两条语句是等价的:

import org.apache.spark.sql.functions.{expr,not,col}
df.withColumn("isExpensive",not(col("UnitPrice").leq(250)))
  .filter("isExpensive")
  .select("Description","UnitPrice").show(5)

df.withColumn("isExpensive",expr("NOT UnitPrice <= 250"))
  .filter("isExpensive")
  .select("Description","UnitPrice").show(5)

如果数据存在空值,则需要以不同的方式处理布尔表达式。下面这条语句可以保证执行空值安全的等价测试:

df.where(col("Description").eqNullSafe("hello")).show()

22. 在处理大数据时,过滤之后要执行的第二个常见任务是计数。举个例子,假设发现错误地记录了零售数据集中的数量,而真实数量其实等于(当前数量*单位价格)^2 + 5。这需要写pow函数来对指定列进行幂运算:

import org.apache.spark.sql.functions.{expr,pow}
val fabricatedQuantity =pow(col("Quantity") * col("UnitPrice"),2) + 5
df.select(expr("CustomerId"),fabricatedQuantity.alias("realQuantity")).show(2)

输出结果如下所示:

当然也可以使用SQL表达式来实现所有这些操作,如下所示:

df.selectExpr(
    "CustomerId",
    "(POWER((Quantity * UnitPrice),2.0) + 5) as realQuantity").show(2)

另一个常见的数值型操作是四舍五入操作。如果只想四舍五入为一个整数,将数值转换为整型即可,但是Spark中还有更具体的函数来执行某个级别精度的转换。下面的例子中将四舍五入至小数点后一位:

import org.apache.spark.sql.functions.{round,bround}
df.select(round(col("UnitPrice"),1).alias("rounded"),col("UnitPrice")).show(5)

默认情况下,如果恰好位于两个数字之间,则round函数会向上取整,也可以通过bround函数进行向下取整:

//in Scala
import org.apache.spark.sql.functions.lit
df.select(round(lit("2.5")),bround(lit("2.5"))).show(2)

--in SQL
SELECT round(2.5),bround(2.5)

结果输出如下所示:

23. 另一个数值型操作就是计算两列的相关性。例如可以通过两列的Pearson相关系数来查看是否东西越便宜买的就越多。可以通过函数以及DataFrame统计方法实现此操作:

// in Scala
import org.apache.spark.sql.functions.{corr}
df.stat.corr("Quantity","UnitPrice")
df.select(corr("Quantity","UnitPrice")).show()

--in SQL
SELECT corr(Quantity,UnitPrice) FROM dfTable

输出结果如下所示:

另一个常见操作是计算一列或一组列的汇总统计信息,可以用describe方法实现。它会计算所有数值列的计数、均值、标准差、最小值和最大值,如下所示:

df.describe().show()

输出结果如下表所示:

如果需要这些精确的数字,也可以import函数并在所需列上应用来实现聚合操作:

import org.apache.spark.sql.functions.{count,mean,stddev_pop,min,max}

StatFunctions包中封装了许多可供使用的统计函数(可以使用stat来访问),比如可以使用approxQuantile方法来计算数据的精确分位数或近似分位数:

val colName = "UnitPrice"
val quantileProbs = Array(0.5)
val relError = 0.05
df.stat.approxQuantile("UnitPrice",quantileProbs,relError) // 2.51

也可以使用它来查看交叉列表或频繁项对,如下所示:

df.stat.crosstab("StockCode","Quantity").show()
df.stat.freqItems(Seq("StockCode","Quantity")).show()

最后一点,还可以使用monotonically_increasing_id函数为每行添加一个唯一的ID。它会从0开始,为每行生成一个唯一值:

import org.apache.spark.sql.functions.monotonically_increasing_id
df.select(monotonically_increasing_id()).show(2)

24. 字符串操作几乎在每个数据流中都有,可能会对正在操作的日志文件执行正则表达式提取或替换,或者检查其中是否包含简单的字符串,或者使所有字符串都变成大写或小写。先从字符串大小写转换开始,Initcap函数会将给定字符串中空格分隔的每个单词首字母大写,如下所示:

// in Scala
import org.apache.spark.sql.functions.{initcap}
df.select(initcap(col("Description"))).show(2,false)

--in SQL
SELECT initcap(Description) FROM dfTable

输出结果如下所示:

正如刚提到的,还可以将字符串转为大写或小写:

// in Scala
import org.apache.spark.sql.functions.{lower,upper}
df.select(col("Description"), 
          lower(col("Description")), 
          upper(lower(col("Description")))).show(2)

--in SQL
SELECT Description,lower(Description),Upper(lower(Description)) FROM dfTable

输出结果如下所示:

另一个简单的任务是删除字符串周围的空格或者在其周围添加空格,可以使用lpad、ltrim、rpad 以及rtrim、trim来实现:

// in Scala
import org.apache.spark.sql.functions.{lit,ltrim,rtrim,rpad,lpad,trim}
df.select(
          ltrim(lit(" HELLO ")).as("ltrim"), 
          rtrim(lit(" HELLO ")).as("rtrim"), 
          trim(lit(" HELLO ")).as("trim"), 
          lpad(lit("HELLO"),3," ").as("lp"), 
          rpad(lit("HELLO"),10," ").as("rp")).show(2)

--in SQL
SELECT ltrim(' HELLLOOOO '), 
       rtrim(' HELLLOOOO '), 
       trim(' HELLLOOOO '), 
       lpad('HELLOOOO ',3,' '), 
       rpad('HELLOOOO ',10,' ') 
FROM dfTable

输出结果如下所示:

需要注意的是,如果lpad或rpad方法输入的数值参数小于字符串长度,它将从字符串的右侧删除字符。

25. 最常见的任务之一是在一个字符串中搜索子串,替换被选中的字符串等。想要执行正则表达式操作,需要用到Spark中两个关键函数:regexp_extract和regexp_replace,这两个函数分别用于提取值和替换值。接下来说明如何使用regexp_replace函数来替换掉Description列中的颜色名:

// in Scala
import org.apache.spark.sql.functions.regexp_replace
val simpleColors = Seq("black", "white", "red", "green", "blue")
val regexString = simpleColors.map(_.toUpperCase).mkString("|")
// “|”在正则表达式中是“或“的意思
df.select(regexp_replace(col("Description"), regexString, "COLOR").alias("color_clean"), col("Description")).show(2)

--in SQL
SELECT regexp_replace(Description, 'BLACK|WHITE|RED|GREEN|BLUE', 'COLOR') as color_clean, 
       Description
FROM dfTable

输出结果如下所示:

另一个任务是用其他字符替换给定的字符。构建正则表达式来实现该操作可能会有些冗长,所以Spark还提供了translate函数来实现该替换操作。这是在字符级上完成的操作,并用于给定字符串中替换掉所有出现的某字符串:

// in Scala
import org.apache.spark.sql.functions.translate
df.select(translate(col("Description"), "LEET", "1337"), col("Description")).show(2)

--in SQL
SELECT translate(Description, 'LEET', '1337'), Description FROM dfTable

输出结果为:

也可以执行其他类似的任务,比如取出第一个被提到的颜色:

// in Scala
import org.apache.spark.sql.functions.regexp_extract
val regexString = simpleColors.map(_.toUpperCase).mkString("(", "|", ")")
// “|”是正则表达式中的“或“的意思
df.select(
    regexp_extract(col("Description"), regexString, 1).alias("color_clean"), 
    col("Description")).show(2)

--in SQL
SELECT regexp_extract(Description, '(BLACK|WHITE|RED|GREEN|BLUE)', 1), 
       DescriptionFROM dfTable

输出结果如下所示:

26. 有时并不是要提取字符串,而是只想检查它们是否存在。此时可以在每列上用contains方法来实现这个操作。该方法将返回一个布尔值,它表示指定的值是否在该列的字符串中:

val containsBlack = col("Description").contains("BLACK")
val containsWhite = col("DESCRIPTION").contains("WHITE")
df.withColumn("hasSimpleColor", containsBlack.or(containsWhite))
  .where("hasSimpleColor")
  .select("Description").show(3, false)

SQL中可以使用instr函数,如下所示:

SELECT Description FROM dfTable
WHERE instr(Description, 'BLACK') >= 1 OR instr(Description, 'WHITE') >= 1

输出结果如下所示:

仅仅两个参数值时看起来很简单,但当有很多值时会变的更复杂。利用Spark可以接收不定数量参数的能力,来解决这个问题。当将一列值转换为一组参数并将它们传递到函数中时使用了var args,这可以有效地解析任意长度的数组,并将它作为参数传递给函数。结合select方法,就可以动态地创建任意数量的列:

val simpleColors = Seq("black","white","red","green","blue")
val selectedColumns = simpleColors.map(color => {
    col("Description").contains(color.toUpperCase).alias(s"is_$color")
}):+expr("*") // 也可以添加该值
df.select(selectedColumns:_*).where(col("is_white").or(col("is_red")))
  .select("Description").show(3,false)

+----------------------------------+
|Description |
+----------------------------------+
|WHITE HANGING HEART T-LIGHT HOLDER|
|WHITE METAL LANTERN |
|RED WOOLLY HOTTIE WHITE HEART. |
+----------------------------------+

27. 当设置inferSchema为true的时候Spark可以自动推理出日期和时间戳数据类型。常见的难题是Spark的TimestampType类只支持二级精度,这意味着如果要处理毫秒或微秒,可能需要将数据作为long类型操作才能解决该问题。在强制转换为TimestampType时,任何更高的精度都被删除。到目前为止Spark仍在使用Java 日期和时间戳,因此要确保符合这些标准。先从基础知识开始,获取当前日期和当前时间戳:

import org.apache.spark.sql.functions.{current_date,current_timestamp}
val dateDF = spark.range(10)
    .withColumn("today",current_date())
    .withColumn("now",current_timestamp())
dateDF.createOrReplaceTempView("dateTable")

该代码的结果如下所示:

root
|--id: long (nullable = false)
|--today: date (nullable = false)
|--now: timestamp (nullable = false)

现在有一个简单的DataFrame 可以使用,从今天起增加和减去5天,这些函数读取一列,然后将添加或减去的天数作为参数:

// in Scala
import org.apache.spark.sql.functions.{date_add,date_sub}
dateDF.select(date_sub(col("today"),5),date_add(col("today"),5)).show(1)

--in SQL
SELECT date_sub(today,5),date_add(today,5) FROM dateTable

+------------------+------------------+
|date_sub(today,5)|date_add(today,5)|
+------------------+------------------+
| 2017-06-12| 2017-06-22|
+------------------+------------------+

另一项常见任务是查看两个日期之间的间隔时间。可以使用datediff函数来完成,该函数将返回两个日期之间的天数。大多数情况下只关心天数,由于每个月的天数不同,还有一个months_between函数,它可以给出两个日期之间相隔的月数:

import org.apache.spark.sql.functions.{datediff,months_between,to_date}
dateDF.withColumn("week_ago",date_sub(col("today"),7))
      .select(datediff(col("week_ago"),col("today"))).show(1)
dateDF.select(
        to_date(lit("2016-01-01")).alias("start"),
        to_date(lit("2017-05-22")).alias("end"))
      .select(months_between(col("start"),col("end"))).show(1)

+-------------------------+
|datediff(week_ago,today)|
+-------------------------+
| -7|
+-------------------------+
+--------------------------+
|months_between(start,end)|
+--------------------------+
| -16.67741935|
+--------------------------+

这里引入了一个新函数to_date()。该函数以指定的格式将字符串转换为日期数据。如果使用这个函数则要在Java SimpleDateFormat中指定想要的格式,这一步非常重要:

import org.apache.spark.sql.functions.{to_date,lit}
spark.range(5).withColumn("date",lit("2017-01-01"))
     .select(to_date(col("date"))).show(1)

28. 如果Spark无法解析日期,它不会抛出错误而只是返回null。如果想获取某种格式的日期数据,再将其转化成另一种格式,可能就带来麻烦。为了解释这一点,来看看从“年-月-日”切换到到“年-日-月”的日期格式。Spark将无法解析此日期,并默认返回null:

dateDF.select(to_date(lit("2016-20-12")),to_date(lit("2017-12-11"))).show(1)

+-------------------+-------------------+
|to_date(2016-20-12)|to_date(2017-12-11)|
+-------------------+-------------------+
| null| 2017-12-11|
+-------------------+-------------------+

发现这是一个比较棘手的bug,因为某些日期可能与正确的格式相匹配,而某些日期则可能不匹配。在上面示例中,第二个日子显示为12月11日,而不是正确日期11月12日。Spark不会抛出错误,因为它无法知道是日期格式用错了,还是这行数据本身就是不正确的。

接下来逐步修复这个操作,并提出一个可靠的方法来完全避免这些问题。第一步,记住需要根据Java SimpleDateFormat 标准指定日期格式,将使用两个函数来解决此问题:to_date和to_timestamp。前者可选择一种日期格式,而后者则强制要求使用一种日期格式:

// in Scala
import org.apache.spark.sql.functions.to_date
val dateFormat = "yyyy-dd-MM"
val cleanDateDF = spark.range(1).select(
    to_date(lit("2017-12-11"), dateFormat).alias("date"), 
    to_date(lit("2017-20-12"), dateFormat).alias("date2"))
cleanDateDF.createOrReplaceTempView("dateTable2")

--in SQL
SELECT to_date(date, 'yyyy-dd-MM'), 
       to_date(date2, 'yyyy-dd-MM'), 
       to_date(date)
FROM dateTable2

+----------+----------+
| date| date2|
+----------+----------+
|2017-11-12|2017-12-20|
+----------+----------+

现在举一个to_timestamp的例子,它要求指定一种格式:

// in Scala
import org.apache.spark.sql.functions.to_timestamp
cleanDateDF.select(to_timestamp(col("date"),dateFormat)).show()

--in SQL
SELECT to_timestamp(date,'yyyy-dd-MM'),to_timestamp(date2,'yyyy-dd-MM')
FROM dateTable2

日期和时间戳之间的转换在所有语言中都很简单——在SQL 中,可以按以下方式实现此操作:

SELECT cast(to_date("2017-01-01","yyyy-dd-MM") as timestamp)

在以正确的格式和类型获取了日期或时间戳之后,它们之间的比较实际上很简单,只需要确保使用同一种日期/时间戳类型格式,或者根据yyyy-MM-dd这种正确格式来指定字符串:

cleanDateDF.filter(col("date2") > lit("2017-12-12")).show()

因此,使用隐式类型转换可能会在无意中搬起石头砸自己的脚,尤其是在处理null值或不同时区或格式的日期时,建议使用显式的类型转换,不要采取隐式转换的方法

29. 实践中,建议始终使用null来表示DataFrame中缺少或空的数据。相较于使用空字符串或其他值来说,使用null值更有利于Spark进行优化。基于DataFrame处理null值主要的方式是使用.na子包,还有一些用于执行操作并显式指定Spark应如何处理null值的函数。显式处理空值要比隐式处理要好一些。例如将列定义为允许null类型,这会带来一个问题,当声明列没有空值时,这并不是实际意义上的强制无空值,此时Spark不会强制拒绝空值插入如果在不该有空值的列中有空值,则可能会得到不正确的结果或很奇怪的表达式,这给调试带来很大困难。

对于null值可以执行以下两项操作: 显式删除null值,也可以用某实值来代替空值。例如合并,通过使用coalesce函数实现从一组列中选择第一个非空值。在下面例子中,因为没有null值,所以它只是返回第一列:

import org.apache.spark.sql.functions.coalesce
df.select(coalesce(col("Description"),col("CustomerId"))).show()

还有一些其他SQL函数可用于实现类似的操作。Ifnull()的功能是如果第一个值为空,则允许选择第二个值,并将其默认为第一个。或者可以使用nullif(),如果两个值相等,则返回null,否则返回第二个值。nvl()功能是如果第一个值为null,则返回第二个值,否则返回第一个。最后nvl2()功能是如果第一个不为null,返回第二个值;否则它将返回最后一个指定值(下面示例中的else_value):

SELECT
ifnull(null, 'return_value'), 
nullif('value', 'value'), 
nvl(null, 'return_value'), 
nvl2('not_null', 'return_value', "else_value")
FROM dfTable LIMIT 1

drop是最简单的函数,它用于删除包含null的行,默认删除包含null值的行:

df.na.drop()
df.na.drop("any")

在SQL中,必须逐列进行:

SELECT * FROM dfTable WHERE Description IS NOT NULL

若指定“any”作为参数,当存在一个值是null时,就删除改行;若指定“all”为参数,只有当所有的值为null或者NaN时才能删除该行:

df.na.drop("all")

也可以通过指定某几列,来对这些列进行删除空值操作:

df.na.drop("all", Seq("StockCode","InvoiceNo"))

30. fill函数可以用一组值填充一列或多列,它可以通过指定一个映射(即一个特定值和一组列)来完成此操作。例如,要替换某字符串类型列中的所有null值为某一字符串,可以指定以下内容:

df.na.fill("All Null values become this string")

对于Integer类型的列,可以使用df.na.fill(5:Integer)来实现;对于Doubles类型的列,则使用df.na.fill(5:Double)。想要指定多列,需传入一个列名的数组,如同前面的例子中所示:

df.na.fill(5, Seq("StockCode","InvoiceNo"))

还可以使用Scala的Map映射来实现,其中主键是列名,而值是想用来替换null的值:

val fillColValues = Map("StockCode" -> 5, "Description" -> "No Value")
df.na.fill(fillColValues)

除了像使用drop和fill函数来替换null 值之外,还有不单单针对空值的灵活操作。最常见的用例是根据当前值替换掉某列中的所有值,唯一的要求是替换值与原始值的类型相同:

df.na.replace("Description", Map("" -> "UNKNOWN"))

当然也可以使用asc_nulls_first,desc_nulls_first,asc_nulls_last或desc_nulls_last,来指定希望null值出现在有序DataFrame中的位置。

31. 可以把结构体视为DataFrame中的DataFrame,下面这个例子帮助更清晰的理解这一点。通过在查询中用圆括号括起一组列来创建一个结构体:

import org.apache.spark.sql.functions.struct
val complexDF = df.select(struct("Description", "InvoiceNo").alias("complex"))
complexDF.createOrReplaceTempView("complexDF")

现在有一个包含complex列的DataFrame,可以像查询另一个DataFrame一样查询它,唯一的区别是使用“.”来访问或列方法getField来实现:

complexDF.select("complex.Description")
complexDF.select(col("complex").getField("Description"))

还可以使用*来查询结构体中的所有值,这将调出顶层DataFrame的所有列:

//in Scala
df.selectExpr("(Description, InvoiceNo) as complex", "*")
df.selectExpr("struct(Description, InvoiceNo) as complex", "*")
complexDF.select("complex.*")

--in SQL
SELECT complex.* FROM complexDF

还有一种结构化数据是数组。定义数组之前先来看一个用例。使用当前数据,目标是读取Description列中的每个单词并将其转换成DataFrame中的一行。第一个操作是将Description列转换为一个复杂类型,即数组。使用split函数并指定分隔符来执行此操作:

// in Scala
import org.apache.spark.sql.functions.split
df.select(split(col("Description"), " ")).show(2)

--in SQL
SELECT split(Description, ' ') FROM dfTable

+---------------------+
|split(Description,)|
+---------------------+
| [WHITE,HANGING,...|
| [WHITE,METAL,LA...|
+---------------------+

这个功能非常有用,因为Spark允许将这种类型作为一个列来操作,用来查询数组的值:

// in Scala
df.select(split(col("Description"), " ").alias("array_col"))
.selectExpr("array_col[0]").show(2)

--in SQL
SELECT split(Description, ' ')[0] FROM dfTable

+------------+
|array_col[0]|
+------------+
| WHITE|
| WHITE|
+------------+

32. 还可以通过查询数组的大小来确定数组的长度:

import org.apache.spark.sql.functions.size
df.select(size(split(col("Description"), " "))).show(2) // 打印5和3

array_contains可以查询此数组是否包含某个值:

// in Scala
import org.apache.spark.sql.functions.array_contains
df.select(array_contains(split(col("Description"), " "),"WHITE")).show(2)

--in SQL
SELECT array_contains(split(Description, ' '), 'WHITE') FROM dfTable

+--------------------------------------------+
|array_contains(split(Description,),WHITE)|
+--------------------------------------------+
|true|
| true|
+--------------------------------------------+

但若想将复杂类型真正转换为一系列行(数组中的每个值为一行),则需要使用explode函数,它的输入参数为一个包含数组的列,并为该数组中的每个值创建一行(每行重复其他值),如下所示:

// in Scala
import org.apache.spark.sql.functions.{split, explode}
df.withColumn("splitted", split(col("Description"), " "))
  .withColumn("exploded", explode(col("splitted")))
  .select("Description", "InvoiceNo", "exploded").show(2)

--in SQL
SELECT Description, InvoiceNo, exploded
FROM (SELECT *, split(Description, " ") as splitted FROM dfTable)
LATERAL VIEW explode(splitted) as exploded

+--------------------+---------+--------+
| Description|InvoiceNo|exploded|
+--------------------+---------+--------+
|WHITE HANGING HEA...| 536365| WHITE|
|WHITE HANGING HEA...| 536365| HANGING|
+--------------------+---------+--------+

33. Map映射是通过map函数构建两列内容的键值对映射形式。然后便可以像在数组中一样去选择它们:

// in Scala
import org.apache.spark.sql.functions.map
df.select(map(col("Description"), col("InvoiceNo")).alias("complex_map")).show(2)

--in SQL
SELECT map(Description, InvoiceNo) as complex_map FROM dfTable
WHERE Description IS NOTNULL

+--------------------+
| complex_map|
+--------------------+
|Map(WHITE HANGING...|
|Map(WHITE METAL L...|
+--------------------+

可以使用正确的键值(key)对它们进行查询,若键值(key)不存在则返回null:

df.select(map(col("Description"), col("InvoiceNo")).alias("complex_map"))
  .selectExpr("complex_map['WHITE METAL LANTERN']").show(2)

+--------------------------------+
|complex_map[WHITE METAL LANTERN]|
+--------------------------------+
| null|
| 536365|
+--------------------------------+

还可以展开map类型,将其转换成列,如下所示:

df.select(map(col("Description"), col("InvoiceNo")).alias("complex_map"))
  .selectExpr("explode(complex_map)").show(2)

+--------------------+------+
| key| value|
+--------------------+------+
|WHITE HANGING HEA...|536365|
| WHITE METAL LANTERN|536365|
+--------------------+------+

34. Spark对处理JSON 数据有一些独特的支持,比如可以在Spark中直接操作JSON字符串,并解析JSON或提取JSON对象。首先创建一个JSON类型的列:

val jsonDF = spark.range(1).selectExpr("""
    '{"myJSONKey" : {"myJSONValue" : [1, 2, 3]}}' as jsonString""")

无论是字典还是数组,均可以使用get_json_object直接查询JSON对象。如果此查询的JSON对象仅有一层嵌套,则可使用json_tuple:

import org.apache.spark.sql.functions.{get_json_object, json_tuple}
jsonDF.select(
    get_json_object(col("jsonString"), "$.myJSONKey.myJSONValue[1]") as "column", 
    json_tuple(col("jsonString"), "myJSONKey")).show(2)

以下是SQL中的等价表示:

jsonDF.selectExpr(
    "json_tuple(jsonString, '$.myJSONKey.myJSONValue[1]') as column").show(2)

输出结果如下所示:

+------+--------------------+
|column| c0|
+------+--------------------+
| 2|{"myJSONValue":[1...|
+------+--------------------+

还可以使用to_json函数将StructType转换为JSON字符串:

import org.apache.spark.sql.functions.to_json
df.selectExpr("(InvoiceNo, Description) as myStruct")
  .select(to_json(col("myStruct")))

这个函数也可以接受参数的映射作为输入,这些映射与JSON的数据源相同。还可以使用from_json函数将JSON数据解析出来。这需要指定一个模式(Schema),也可以指定其他的映射:

import org.apache.spark.sql.functions.from_json
import org.apache.spark.sql.types._
val parseSchema = new StructType(Array(
new StructField("InvoiceNo", StringType, true), 
new StructField("Description", StringType, true)))
df.selectExpr("(InvoiceNo, Description) as myStruct")
  .select(to_json(col("myStruct")).alias("newJSON"))
  .select(from_json(col("newJSON"), parseSchema), col("newJSON")).show(2)

+----------------------+--------------------+
|jsontostructs(newJSON)| newJSON|
+----------------------+--------------------+
| [536365,WHITE HAN...|{"InvoiceNo":"536...|
| [536365,WHITE MET...|{"InvoiceNo":"536...|
+----------------------+--------------------+

35. Spark最强大的功能之一就是用户自定义函数(UDF),让用户可以使用Python或Scala 编写自己的自定义转换操作,甚至可以使用外部库。UDF可以将一个或多个列作为输入,同时也可以返回一个或多个列。这些函数只是描述了(一个接一个地)处理数据记录的方法。默认情况下,这些函数被注册为SparkSession或者Context的临时函数。第一步是设计一个实际的函数,用一个简单例子来说明,编写一个power3函数,该函数接收一个数字并返回它的三次幂:

val udfExampleDF = spark.range(5).toDF("num")
def power3(number:Double):Double = number * number * number
power3(2.0)

但是目前这个UDF函数的输入要求很高:它必须是特定类型(数值类型),并且不能为null。现在已经创建了这些函数并对它们进行了测试,接下来需要在Spark上注册UDF以便在所有的worker机器上使用它们。Spark将在driver进程上序列化该函数,并将它通过网络传递到所有executor进程

当使用该UDF函数时,基本上有两种不同的情况发生:如果该UDF函数是用Scala或Java编写的,则可以在JVM中使用它,这意味着不能使用spark为内置函数提供的代码生成能力,或导致性能的一些下降。如果函数是用Python编写的,则会出现截然不同的情况,Spark在worker上启动一个Python进程,将所有数据序列化为Python可解释的格式(注意数据之前在JVM 中),在Python进程中对该数据逐行执行UDF,最终将对每行的操作结果返回给JVM 和Spark,如下图所示:

但需要注意的是,启动此Python进程代价很高,但主要代价是将数据序列化为Python可理解的格式的这个过程。造成代价高的原因有两个:一个是计算昂贵,另一个是数据进入Python后Spark无法管理worker的内存。这意味着,如果某个worker因资源受限而失败(因为JVM和Python都在同一台机器上争夺内存),则可能会导致该worker出现故障。所以建议除了数据挖掘、机器学习等用pyspark,其他尽量使用Scala或Java编写UDF,不仅编写程序的时间少,还能提高性能

36. 现在来实现一个例子。首先需要注册该函数,以便其可用作DataFrame函数:

import org.apache.spark.sql.functions.udf
val power3udf = udf(power3(_:Double):Double)

可以像使用其他DataFrame函数一样使用UDF,如下所示:

udfExampleDF.select(power3udf(col("num"))).show()

+-----------+
|power3(num)|
+-----------+
| 0|
| 1|
+-----------+

此时只能将它用作DataFrame函数。也就是说不能在字符串表达式中使用它。但是也可以将此UDF注册为SparkSQL函数。这种做法很有用,因为它使得能在SQL语言中以及跨语言环境下使用此函数。接下来在Scala中注册该函数:

spark.udf.register("power3", power3(_:Double):Double)
udfExampleDF.selectExpr("power3(num)").show(2)

为了确保UDF函数正常工作,还要做的一件事是指定返回类型。Spark管理它自己的类型信息,它不完全与Python的类型相一致。因此最好的做法是在定义函数时定义该函数的返回值类型。指定返回值类型不是必需的,但建议指定。如果指定的返回值类型与函数返回的实际类型不匹配,则Spark不会抛出错误,但会返回null以表明失败。如果将以下函数中的返回值类型改为Double型,则可以看到返回null的情况:

# in Python
from pyspark.sql.types import IntegerType, DoubleType
# registered via Python
spark.udf.register("power3py", power3, DoubleType())
udfExampleDF.selectExpr("power3py(num)").show(2)

这是由于整型的表示范围造成的,当在Python中操作整数时,Python不会将它们转换为浮点型(对应于Spark的double类型),因此会看到返回null。可以确保Python函数返回浮点型而非整型来解决这个问题。在注册后,可以在SQL中使用任一个UDF函数:

SELECT power3(12), power3py(12) --doesn't work because of return type

当想从UDF中选择返回一个值时,应该在Python中返回None,并在Scala中返回一个Option类型。最后,还可以使用Hive语法来创建UDF/UDAF。为了实现这一点,首先必须在创建SparkSession时启用Hive支持(通过SparkSession.builder().enableHiveSupport()来启用)。然后可以在SQL中注册UDF。这仅支持预编译的Scala和Java包,因此需要将它们指定为依赖项:

CREATE TEMPORARY FUNCTION myFunc AS 'com.organization.hive.udf.FunctionName'

此外,还能通过删除TEMPORARY将其注册为Hive Metastore中的永久函数。

四、聚合操作

37. 在聚合操作中一件重要的事是考虑返回结果的精确度。在进行大数据计算时获得一个精确结果的开销会很大,但是计算出一个近似结果相对要容易得多。一些近似函数通常都会提高Spark作业执行速度和效率,特别是对交互式和ad hoc分析。下面的代码首先读取零售业的采购数据,然后对数据进行重分区以减少分区数量(事先知道仅有少量数据存储在大量小文件里),最后将这些数据缓存起来以便后续的快速访问:

val df = spark.read.format("csv")
    .option("header", "true")
    .option("inferSchema", "true")
    .load("/data/retail-data/all/*.csv")
    .coalesce(5)
df.cache()
df.createOrReplaceTempView("dfTable")

下面是数据样本,以便参考:

+---------+---------+--------------------+--------+--------------+---------+-----
|InvoiceNo|StockCode| Description|Quantity| InvoiceDate|UnitPrice|Cu...
+---------+---------+--------------------+--------+--------------+---------+-----
| 536365| 85123A|WHITE HANGING... | 6|12/1/2010 8:26| 2.55| ...
| 536365| 71053|WHITE METAL... | 6|12/1/2010 8:26| 3.39| ...
...
| 536367| 21755|LOVE BUILDING BLO...| 3|12/1/2010 8:34| 5.95| ...
| 536367| 21777|RECIPE BOX WITH M...| 4|12/1/2010 8:34| 7.95| ...
+---------+---------+--------------------+--------+--------------+---------+--

基本的聚合操作将作用于整个DataFrame。最简单的例子是count方法:

df.count()==541909

count操作与transformation操作不一样,它是action操作会立即返回计算结果。可以使用count来获得数据集的总体大小,但它还有一个作用是可以缓存整个DataFrame到内存里,当然用count这种方法实现缓存数据有点奇怪,主要是因为在本例中count立即执行,而不像转换操作那样惰性执行。下面还会看见如何把count作为惰性函数来使用,

在这种情况下可以执行以下两项操作之一:第一个是对指定的列进行计数,第二个是使用count(*)或count(1)对所有列进行计数,如下面例子所示:

import org.apache.spark.sql.functions.count
df.select(count("StockCode")).show() // 541909

关于对null值进行计数有一些注意的地方。例如当执行count(*)时,Spark会对null值进行计数,而当对某指定列计数时,则不会对null值进行计数。有时数据的总量不重要,而获得唯一(unique)组的数量才是需要的。要获得唯一组数量,可以使用countDistinct函数,而这个函数仅在统计针对某列的计数时才有意义:

// in Scala
import org.apache.spark.sql.functions.countDistinct
df.select(countDistinct("StockCode")).show() // 4070

--in SQL
SELECT COUNT(DISTINCT *) FROM DFTABLE

但如之前所说,为了避免OOM一般不建议用count distinct语句,而建议用group by

38. 通常在处理大数据集的时候,精确的统计计数并不那么重要,某种精度的近似值也是可以接受的,此时可以使用approx_count_distinct函数:

// in Scala
import org.apache.spark.sql.functions.approx_count_distinct
df.select(approx_count_distinct("StockCode", 0.1)).show() // 3364

--in SQL
SELECT approx_count_distinct(StockCode, 0.1) FROM DFTABLE

注意approx_count_distinct带了另一个参数,该参数指定可容忍的最大误差。本例中指定了一个相当大的误差率,因此得到的答案与正确值差距很大,但执行速度更快,比countDistinct函数执行耗时更少。当处理更大的数据集的时候,这种提升会更加明显。

first和last这两个函数可以得到DataFrame的第一个值和最后一个值,它是基于DataFrame中行的顺序而不是DataFrame中值的顺序

// in Scala
import org.apache.spark.sql.functions.{first, last}
df.select(first("StockCode"), last("StockCode")).show()

--in SQL
SELECT first(StockCode), last(StockCode) FROM dfTable

+-----------------------+----------------------+
|first(StockCode, false)|last(StockCode, false)|
+-----------------------+----------------------+
| 85123A| 22138|
+-----------------------+----------------------+

除了用sum计算总和外,还可以使用sumDistinct函数来对一组去重(distinct)值进行求和:

import org.apache.spark.sql.functions.sumDistinct
df.select(sumDistinct("Quantity")).show() // 29310

Spark还提供了一种通过avg或mean函数获取平均值的方法。在这个例子中使用alias(别名),以便以后更方便地使用这些值:

import org.apache.spark.sql.functions.{sum, count, avg, expr}
df.select(
          count("Quantity").alias("total_transactions"),
          sum("Quantity").alias("total_purchases"),
          avg("Quantity").alias("avg_purchases"),
          expr("mean(Quantity)").alias("mean_purchases"))
  .selectExpr(
              "total_purchases/total_transactions",
              "avg_purchases",
              "mean_purchases").show()

+--------------------------------------+----------------+----------------+
|(total_purchases / total_transactions)| avg_purchases| mean_purchases|
+--------------------------------------+----------------+----------------+
| 9.55224954743324|9.55224954743324|9.55224954743324|
+--------------------------------------+----------------+----------------+

39. Spark既支持统计样本标准差也支持统计总体标准差,它们两个在统计学上是完全不同的概念,一定要区分它们。如果使用variance函数和stddev函数,默认是计算样本样本方差或标准差的。还可以显式指定这些值或引用总体标准差或方差:

// in Scala
import org.apache.spark.sql.functions.{var_pop, stddev_pop}
import org.apache.spark.sql.functions.{var_samp, stddev_samp}
df.select(var_pop("Quantity"), var_samp("Quantity"),
stddev_pop("Quantity"), stddev_samp("Quantity")).show()

--in SQL
SELECT var_pop(Quantity), var_samp(Quantity),
stddev_pop(Quantity), stddev_samp(Quantity)

+------------------+------------------+--------------------+-------------------+
| var_pop(Quantity)|var_samp(Quantity)|stddev_pop(Quantity)|stddev_samp(Quan...|
+------------------+------------------+--------------------+-------------------+
|47559.303646609056|47559.391409298754| 218.08095663447796| 218.081157850...|
+------------------+------------------+--------------------+-------------------+

偏度系数(skewness)和峰度系数(kurtosis)都是对数据集中的极端数据点的衡量指标。偏度系数衡量数据相对于平均值的不对称程度,而峰度系数衡量数据分布形态陡缓程度。在将数据建模为随机变量的概率分布时,它们都很重要。使用以下函数可以计算偏度和峰度:

import org.apache.spark.sql.functions.{skewness, kurtosis}
df.select(skewness("Quantity"), kurtosis("Quantity")).show()

+-------------------+------------------+
| skewness(Quantity)|kurtosis(Quantity)|
+-------------------+------------------+
|-0.2640755761052562|119768.05495536952|
+-------------------+------------------+

前面讨论了单列聚合,不过有的函数是去比较两个不同列的值之间的相互关系。其中两个函数就是cov和corr,它们分别用于计算协方差和相关性。相关性采用Pearson相关系数来衡量,范围是-1到+1。协方差的范围由数据中的输入决定。跟var函数一样,协方差又分为样本协方差和总体协方差,因此在使用的时候需要指定。相关性没有这个概念,因此没有总体或样本的相关性之分。以下是它们的使用方式:

import org.apache.spark.sql.functions.{corr, covar_pop, covar_samp}
df.select(corr("InvoiceNo", "Quantity"), covar_samp("InvoiceNo", "Quantity"),
          covar_pop("InvoiceNo", "Quantity")).show()

+-------------------------+-------------------------------+---------------------+
|corr(InvoiceNo, Quantity)|covar_samp(InvoiceNo, Quantity)|covar_pop(InvoiceN...|
+-------------------------+-------------------------------+---------------------+
| 4.912186085635685E-4| 1052.7280543902734| 1052.7...|
+-------------------------+-------------------------------+---------------------

40. 在Spark中不仅可以在数值型上执行聚合操作,还能在复杂类型上执行聚合操作。例如,可以收集某列上的值到一个list列表里,或者将unique唯一值收集到一个set集合里。用户可以在流水线处理的后续操作中再访问该集合,或者将整个集合传递给UDF:

import org.apache.spark.sql.functions.{collect_set, collect_list}
df.agg(collect_set("Country"), collect_list("Country")).show()

+--------------------+---------------------+
|collect_set(Country)|collect_list(Country)|
+--------------------+---------------------+
|[Portugal, Italy,...| [United Kingdom, ...|
+--------------------+---------------------+

到目前为止还只在DataFrame级别上进行聚合操作,更常见的任务是根据分组数据进行计算,典型应用是处理类别数据,根据某一列中的数据进行分组,然后基于分组情况来对其他列的数据进行计算。接下来执行一些分组操作,首先执行计数操作,按每个唯一的invoice编号进行分组并获取该invoice上的项目数。注意这将返回另一个DataFrame并会延迟执行。

可以分两个阶段进行分组:首先指定要进行分组的一列或多列,然后指定一个或多个聚合操作。第一步返回一个RelationalGroupedDataset,第二步返回DataFrame,可以指定任意数量的列进行分组,如下所示:

//in Scala
df.groupBy("InvoiceNo", "CustomerId").count().show()

--in SQL
SELECT count(*) FROM dfTable GROUP BY InvoiceNo, CustomerId

正如前面提到计数有点特殊,因为它作为一种方法存在。可以不用将该函数作为表达式传递到select语句中,而是在agg中指定它。这使得仅需使用agg(),里面即可传入任意表达式,甚至可以在转换某列之后给它取别名,以便在之后的数据流处理中使用:

import org.apache.spark.sql.functions.count
df.groupBy("InvoiceNo").agg(
    count("Quantity").alias("quan"),
    expr("count(Quantity)")).show()

+---------+----+---------------+
|InvoiceNo|quan|count(Quantity)|
+---------+----+---------------+
| 536596| 6| 6|
...
| C542604| 8| 8|
+---------+----+---------------+

有时将transformation操作指定为一系列Map会更方便,其中键(key)为列,值为要执行的字符串形式聚合函数。如果以inline方式指定也可以重用多个列名:

// in Scala
df.groupBy("InvoiceNo").agg("Quantity"->"avg", "Quantity"->"stddev_pop").show()

--in SQL
SELECT avg(Quantity), stddev_pop(Quantity), InvoiceNo FROM dfTable
GROUP BY InvoiceNo

+---------+------------------+--------------------+
|InvoiceNo| avg(Quantity)|stddev_pop(Quantity)|
+---------+------------------+--------------------+
| 536596| 1.5| 1.1180339887498947|
...
| C542604| -8.0| 15.173990905493518|
+---------+------------------+--------------------+

41. 还可以使用window函数来执行某些特殊的聚合操作,具体就是在指定数据“窗口”上执行聚合操作,并使用对当前数据的引用来定义它,此窗口指定将哪些行传递给此函数。这么说有些抽象,它有点类似于一个标准的group by,所以来稍微对它们进行区分。

在用group by处理数据分组时,每一行只能进入一个分组。窗口函数基于称为框(frame)的一组行,计算表的每一输入行的返回值,每一行可以属于一个或多个框。常见用例就是查看某些值的滚动平均值,其中每一行代表一天,那么每行属于7个不同的框(某一周为一个frame)。稍后会定义框,Spark支持三种窗口函数:排名函数、解析函数和聚合,如下图所示:

为了更好演示,将添加一个date列,该列将发票日期转换为仅包含日期信息(不包括时间信息)的列:

import org.apache.spark.sql.functions.{col, to_date}
val dfWithDate = df.withColumn("date", to_date(col("InvoiceDate"),
                                               "MM/d/yyyy H:mm"))
dfWithDate.createOrReplaceTempView("dfWithDate")

配置窗口函数的第一步是创建一个窗口规范。请注意partition by与目前为止所接触的分组概念无关,它只是描述如何进行分区的一个类似概念。排序语句指定了在一个分区内如何对数据排序,最后的rowsBetween语句指定了frame配置。在本例中,设置了当前输入行之前的所有行都包含在这个frame里:

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions.col
val windowSpec = Window
    .partitionBy("CustomerId", "date")
    .orderBy(col("Quantity").desc)
    .rowsBetween(Window.unboundedPreceding, Window.currentRow)

现在,使用聚合函数来了解有关每个特定客户的更多信息。一个例子是计算一个客户有史以来的最大购买数量,为了获得该结果,可以使用之前介绍的聚合函数,并将某一列名或表达式作为输入参数。此外还指明了使用某个具体的窗口规范,它定义了此函数将应用于哪些frame:

import org.apache.spark.sql.functions.max
val maxPurchaseQuantity = max(col("Quantity")).over(windowSpec)

这将返回一列(或表达式)。现在可以在DataFrame的select语句中使用它。不过在这样做之前,先创建购买数量排名,使用dense_rank函数来确定每个用户在哪天购买数量最多。使用dense_rank而不是rank,是为了避免在有等值(在该例子中是重复行)的情况下避免排序结果不连续:

import org.apache.spark.sql.functions.{dense_rank, rank}
val purchaseDenseRank = dense_rank().over(windowSpec)
val purchaseRank = rank().over(windowSpec)

该代码会返回可在select语句中使用的列。可以执行select来查看计算出的窗口值:

// in Scala
import org.apache.spark.sql.functions.col
dfWithDate.where("CustomerId IS NOT NULL").orderBy("CustomerId")
.select(
        col("CustomerId"),
        col("date"),
        col("Quantity"),
        purchaseRank.alias("quantityRank"),
        purchaseDenseRank.alias("quantityDenseRank"),
        maxPurchaseQuantity.alias("maxPurchaseQuantity")).show()

--in SQL
SELECT CustomerId, date, Quantity,
rank(Quantity) OVER (PARTITION BY CustomerId, date
                     ORDER BY Quantity DESC NULLS LAST
                     ROWS BETWEEN
                     UNBOUNDED PRECEDING AND
                     CURRENT ROW) as rank,
dense_rank(Quantity) OVER (PARTITION BY CustomerId, date
                     ORDER BY Quantity DESC NULLS LAST
                     ROWS BETWEEN
                     UNBOUNDED PRECEDING AND
                     CURRENT ROW) as dRank,
max(Quantity) OVER (PARTITION BY CustomerId, date
                    ORDER BY Quantity DESC NULLS LAST
                    ROWS BETWEEN
                    UNBOUNDED PRECEDING AND
                    CURRENT ROW) as maxPurchase
FROM dfWithDate WHERE CustomerId IS NOT NULL ORDER BY CustomerId

+----------+----------+--------+------------+-----------------+---------------+
|CustomerId| date|Quantity|quantityRank|quantityDenseRank|maxP...Quantity|
+----------+----------+--------+------------+-----------------+---------------+
| 12346|2011-01-18| 74215| 1| 1| 74215|
| 12346|2011-01-18| -74215| 2| 2|74215|
| 12347|2010-12-07| 36| 1| 1| 36|
| 12347|2010-12-07| 30| 2| 2| 36|
...
| 12347|2010-12-07| 12| 4| 4| 36|
| 12347|2010-12-07| 6| 17| 5| 36|
| 12347|2010-12-07| 6| 17| 5| 36|
+----------+----------+--------+------------+-----------------+---------------+

42. 配合group by表达式可以对一组列上的值进行聚合操作。但是在某些情况下需要更完善的功能,比如跨多个组的聚合操作。这能通过分组集(Grouping Set)来实现。分组集是用于将多组聚合操作组合在一起的底层工具,使得能够在group by语句中创建任意的聚合操作。来通过一个例子更好的理解它,希望获得所有用户各种股票的数量,为此使用以下SQL表达式:

// in Scala
val dfNoNull= dfWithDate.drop()
dfNoNull.createOrReplaceTempView("dfNoNull")

--in SQL
SELECT CustomerId, stockCode, sum(Quantity) FROM dfNoNull
GROUP BY customerId, stockCode
ORDER BY CustomerId DESC, stockCode DESC

可以使用grouping set实现完全相同的操作,如下所示:

SELECT CustomerId, stockCode, sum(Quantity) FROM dfNoNull
GROUP BY customerId, stockCode GROUPING SETS((customerId, stockCode))
ORDER BY CustomerId DESC, stockCode DESC

输出结果如下所示:

+----------+---------+-------------+
|CustomerId|stockCode|sum(Quantity)|
+----------+---------+-------------+
| 18287| 85173| 48|
| 18287| 85040A| 48|
| 18287| 85039B| 120|
...
| 18287| 23269| 36|
+----------+---------+-------------+

但需要注意的是,Grouping Set取决于聚合级别的null值。如果不过滤空值,则会得到不正确的结果。包括cube、rollup和grouping set都是这样。上面这个任务很简单,但是如果还想要统计股票总数,而不区分客户和股票,使用传统group by语句是不可能实现的,但是使用grouping set将会很简单。用户仅需要在grouping set中指定所希望执行聚合操作的级别,其实grouping set就是实现了将各种分组统计得到的结果union在一起:

SELECT CustomerId, stockCode, sum(Quantity) FROM dfNoNull
GROUP BY customerId, stockCode GROUPING SETS((customerId, stockCode),())
ORDER BY CustomerId DESC, stockCode DESC

+----------+---------+-------------+
|customerId|stockCode|sum(Quantity)|
+----------+---------+-------------+
| 18287| 85173| 48|
| 18287| 85040A| 48|
| 18287| 85039B| 120|
...
| 18287| 23269| 36|
+----------+---------+-------------+

43. GROUPING SETS操作仅在SQL中可用。若想在DataFrame中执行相同的操作,使用rollup和cube操作可以得到完全相同的结果,接下来看看如何使用这两个操作。

rollup分组聚合是一种多维聚合操作,可以执行group by维度范围从右到左的多个计算,例如group by A,B,C with rollup首先会对(A、B、C)进行group by,然后对(A、B)进行group by,然后是(A)进行group by,最后对全表进行group by操作(没有分组条件,所有的分组字段均为null),最后将结果进行union。接下来根据时间(Date)和地点(Country)来创建一个rollup分组,并且创建一个新的DataFrame,它将包括所有日期交易的总股票数、每个日期交易的所有股票数、以及在每个日期中每个国家产生的股票交易数:

val rolledUpDF = dfNoNull.rollup("Date", "Country").agg(sum("Quantity"))
    .selectExpr("Date", "Country", "`sum(Quantity)` as total_quantity")
    .orderBy("Date")
rolledUpDF.show()

+----------+--------------+--------------+
| Date| Country|total_quantity|
+----------+--------------+--------------+
| null| null| 5176450|
|2010-12-01|United Kingdom| 23949|
|2010-12-01| Germany| 117|
|2010-12-01| France| 449|
...
|2010-12-03| France| 239|
|2010-12-03| Italy| 164|
|2010-12-03| Belgium| 528|
+----------+--------------+--------------+

每列的null值表示不区分该列的总数(比如Country列为null值表示该日期所有地点的总数),而如果在两列中都是null值则表示所有日期和地点的总数。

上面rollup相当于cube的子集,cube分组聚合则更进一步,是对所有参与的列值进行所有维度的全组合聚合,例如首先对(A、B、C)进行group by,然后依次是(A、B),(A、C),(A),(B、C),(B),( C),最后对全表进行group by操作(没有分组条件,所有的分组字段均为null),最后将结果进行union。也就是说,它不仅基于任一日期对各地点进行汇总聚合,也会基于任一地点对各日期进行汇总聚合。cube分组聚合可以计算如下的分组聚合统计:

(1)在所有日期和所有国家发生的交易总数。

(2)在每个日期发生于所有国家的交易总数。

(3)在每个日期发生于每个国家的交易总数。

(4)在所有日期发生于每个国家的交易总数。

方法调用非常相似,但不是调用rollup而是调用cube这是一个快速简单获得数据表几乎所有汇总信息的好方法,这个汇总信息可以为以后的数据处理继续使用:

dfNoNull.cube("Date", "Country").agg(sum(col("Quantity")))
        .select("Date", "Country", "sum(Quantity)").orderBy("Date").show()

+----+--------------------+-------------+
|Date| Country|sum(Quantity)|
+----+--------------------+-------------+
|null| Japan| 25218|
|null| Portugal| 16180|
|null| Unspecified|3300|
|null| null| 5176450|
|null| Australia| 83653|
...
|null| Norway| 19247|
|null| Hong Kong| 4769|
|null| Spain| 26824|
|null| Czech Republic| 592|
+----+--------------------+-------------+

44. 有时当使用cube和rollup时,希望能够显示聚合的维度级别,以便可以轻松地找到自己想要的信息。可以使用grouping_id来完成此操作,这会在返回结果集中多增加一列。以下示例中的查询将返回四个不同的分组级别ID:

代码示例如下所示:

import org.apache.spark.sql.functions.{grouping_id, sum, expr}
dfNoNull.cube("customerId", "stockCode").agg(grouping_id(), sum("Quantity"))
        .orderBy(expr("grouping_id()").desc)
        .show()

+----------+---------+-------------+-------------+
|customerId|stockCode|grouping_id()|sum(Quantity)|
+----------+---------+-------------+-------------+
| null| null| 3| 5176450|
| null| 23217| 2| 1309|
| null| 90059E| 2| 19|
...
+----------+---------+-------------+-------------+

透视转换(pivot,即行列转置)可以根据某列中的不同行转换为多个列。例如在当前数据中有一个Country列,通过一个透视转换可以对每个Country执行聚合操作,并且以易于查看的方式显示它们:

val pivoted = dfWithDate.groupBy("date").pivot("Country").sum()

在使用了透视转换后,现在DataFrame会为每一个Country和数值型列组合产生一个新列,以及之前的date列。例如对于USA,就有USA_sum(Quantity),USA_sum(UnitPrice),USA_sum(CustomerID)这些列,这对应于数据集中的每个数值型列。以下是这个数据的一个示例查询和结果:

pivoted.where("date > '2011-12-05'").select("date" ,"`USA_sum(Quantity)`").show()

+----------+-----------------+
| date|USA_sum(Quantity)|
+----------+-----------------+
|2011-12-06| null|
|2011-12-09| null|
|2011-12-08| -196|
|2011-12-07| null|
+----------+-----------------+

45. 用户自定义聚合函数(UDAF)是用户根据自定义公式或业务逻辑定义自己聚合函数的一种方法。可以使用UDAF来计算输入数据组(与单行相对) 的自定义计算。Spark维护单个AggregationBuffer,它用于存储每组输入数据的中间结果。若要创建UDAF,必须继承UserDefinedAggregateFunction基类并实现以下方法

(1)inputSchema用于指定输入参数,输入参数类型为StructType。

(2)bufferSchema用于指定UDAF中间结果,中间结果类型为StructType。

(3)dataType用于指定返回结果,返回结果的类型为DataType。

(4)deterministic是一个布尔值,它指定此UDAF对于某个输入是否会返回相同的结果。

(5)initialize初始化聚合缓冲区的初始值。

(6)update描述应如何根据给定行更新内部缓冲区。

(7)merge描述应如何合并两个聚合缓冲区。

(8)evaluate将生成聚合最终结果。

下面的例子实现了一个BoolAnd,它将返回(给定列)所有的行是否为true; 如果不是则返回false:

import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
class BoolAnd extends UserDefinedAggregateFunction {
  def inputSchema: org.apache.spark.sql.types.StructType =
    StructType(StructField("value", BooleanType) :: Nil)
  def bufferSchema: StructType = StructType(
    StructField("result", BooleanType) :: Nil
  )
  def dataType: DataType = BooleanType
  def deterministic: Boolean = true
  def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer(0) = true
  }
  def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    buffer(0) = buffer.getAs[Boolean](0) && input.getAs[Boolean](0)
  }
  def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1(0) = buffer1.getAs[Boolean](0) && buffer2.getAs[Boolean](0)
  }
  def evaluate(buffer: Row): Any = {
    buffer(0)
  }
}

现在简单地实例化自定义的类,也可以将其注册为一个函数:

val ba = new BoolAnd
spark.udf.register("booland", ba)
import org.apache.spark.sql.functions._
spark.range(1)
     .selectExpr("explode(array(TRUE, TRUE, TRUE)) as t")
     .selectExpr("explode(array(TRUE, FALSE, TRUE)) as f", "t")
     .select(ba(col("t")), expr("booland(f)"))
     .show()

+----------+----------+
|booland(t)|booland(f)|
+----------+----------+
| true| false|
+----------+----------+

UDAF目前仅在Scala或Java中可用。但是在Spark2.3中,还可以通过注册该函数来调用Scala或Jav的UDF和UDAF。

五、Join操作

46. 除了等值join之外,Spark还提供很多复杂的join策略,甚至还能使用复杂类型并在执行join时执行诸如检查数组中是否存在键的操作。首先来创建一些可以在例子中使用的简单数据集:

val person = Seq(
    (0, "Bill Chambers", 0, Seq(100)),
    (1, "Matei Zaharia", 1, Seq(500, 250, 100)),
    (2, "Michael Armbrust", 1, Seq(250, 100)))
  .toDF("id", "name", "graduate_program", "spark_status")
val graduateProgram = Seq(
    (0, "Masters", "School of Information", "UC Berkeley"),
    (2, "Masters", "EECS", "UC Berkeley"),
    (1, "Ph.D.", "EECS", "UC Berkeley"))
  .toDF("id", "degree", "department", "school")
val sparkStatus = Seq(
    (500, "Vice President"),
    (250, "PMC Member"),
    (100, "Contributor"))
  .toDF("id", "status")

接下来将它们注册为表格,以便在后面的例子中使用它们:

person.createOrReplaceTempView("person")
graduateProgram.createOrReplaceTempView("graduateProgram")
sparkStatus.createOrReplaceTempView("sparkStatus")

内连接(Inner Join)判断来自两个DataFrame或表中两行的指定键是否相等,如果相等则将这两行连接在一起并返回(匹配两个DataFrame中指定键相等的任意两行,并将其连接后返回),内连接是默认的连接操作,因此只需指定左侧DataFrame并在JOIN表达式中连接右侧即可:

//in Scala
val joinExpression = person.col("graduate_program") === graduateProgram.col("id")
person.join(graduateProgram,joinExpression).show()

--in SQL
SELECT * FROM person JOIN graduateProgram
ON person.graduate_program = graduateProgram.id

+---+----------------+----------------+---------------+---+-------+----------+---
| id| name|graduate_program| spark_status| id| degree|department|...
+---+----------------+----------------+---------------+---+-------+----------+---
| 0| Bill Chambers| 0| [100]| 0|Masters| School...|...
| 1| Matei Zaharia| 1|[500,250,100]| 1| Ph.D.| EECS|...
| 2|Michael Armbrust| 1| [250,100]| 1| Ph.D.| EECS|...
+---+----------------+----------------+---------------+---+-------+----------+---

还可以通过传入第三个参数来显式指定连接类型JoinType:

var joinType = "inner"
person.join(graduateProgram,joinExpression,joinType).show()

47. 外连接(Outer Join)是指两个DataFrame或表中两行的指定键是否相等,如果相等,将这两行连接在一起并返回;如果不相等,将左侧或右侧DataFrame中没有匹配的行的各列用null替换,再与左侧或右侧DataFrame中已有的行连接在一起返回:

//in Scala
joinType = "outer"
person.join(graduateProgram,joinExpression,joinType).show()

--in SQL
SELECT * FROM person FULL OUTER JOIN graduateProgram
ON graduate_program = graduateProgram.id

+----+----------------+----------------+---------------+---+-------+-------------
| id| name|graduate_program| spark_status| id| degree| departmen...
+----+----------------+----------------+---------------+---+-------+-------------
| 1| Matei Zaharia| 1|[500,250,100]| 1| Ph.D.| EEC...
| 2|Michael Armbrust| 1| [250,100]| 1| Ph.D.| EEC...
|null| null| null| null| 2|Masters| EEC...
| 0| Bill Chambers| 0| [100]| 0|Masters| School...
+----+----------------+----------------+---------------+---+-------+-------------

左半连接(Right SemiJoin)与其他连接操作有点区别,它实际上并不包括右侧DataFrame中的任何值,它只是查看左侧DataFrame的值是否存在于右侧DataFrame里,如果存在则在连接结果中保留,即使左侧DataFrame中存在重复键,对应行也将保留在结果中。可以将左半连接(Left Semi Join)看作DataFrame 上的过滤器,而不是常规连接函数:

joinType = "left_semi"
graduateProgram.join(person,joinExpression,joinType).show()

+---+-------+--------------------+-----------+
| id| degree| department| school|
+---+-------+--------------------+-----------+
| 0|Masters|School of Informa...|UC Berkeley|
| 1| Ph.D.| EECS|UC Berkeley|
+---+-------+--------------------+-----------+

左反连接(Left Anti Join)与左半连接(Left Semi Join)相反。与左半连接类似的是,它实际上并不包含右侧DataFrame 中的任何值,它只是查看该值是否存在于右侧DataFrame中。但是,左反连接并不保留第二个DataFrame中存在的值,而是只保留在第二个DataFrame中没有相应键的值。可以将反连接视为一个NOT IN SQL类型的过滤器:

//in Scala
joinType = "left_anti"
graduateProgram.join(person,joinExpression,joinType).show()

--in SQL
SELECT * FROM graduateProgram LEFT ANTI JOIN person
ON graduateProgram.id = person.graduate_program

+---+-------+----------+-----------+
| id| degree|department| school|
+---+-------+----------+-----------+
| 2|Masters| EECS|UC Berkeley|
+---+-------+----------+-----------+

48. 执行连接操作时常会遇到一些常见问题,接下来将提供对这些常见问题的解决方法,然后从宏观角度解释下Spark是如何执行连接操作的。对复杂类型的join操作尽管看起来像是一个挑战,但实际上并不是,任何返回Boolean值的表达式都是有效的join表达式:

//in Scala
import org.apache.spark.sql.functions.expr
person.withColumnRenamed("id","personId")
      .join(sparkStatus,expr("array_contains(spark_status,id)")).show()

--in SQL
SELECT * FROM
(select id as personId,name,graduate_program,spark_status FROM person)
INNER JOIN sparkStatus ON array_contains(spark_status,id)

+--------+----------------+----------------+---------------+---+--------------+
|personId| name|graduate_program| spark_status| id| status|
+--------+----------------+----------------+---------------+---+--------------+
| 0| Bill Chambers| 0| [100]|100| Contributor|
| 1| Matei Zaharia| 1|[500,250,100]|500|Vice President|
| 1| Matei Zaharia| 1|[500,250,100]|250| PMC Member|
| 1| Matei Zaharia| 1|[500,250,100]|100| Contributor|
| 2|Michael Armbrust| 1| [250,100]|250| PMC Member|
| 2|Michael Armbrust| 1| [250,100]|100| Contributor|
+--------+----------------+----------------+---------------+---+--------------+

join操作中棘手的问题是在生成的DataFrame中处理重复的列名。DataFrame中的每一列在Spark的SQL引擎Catalyst中都有唯一的ID,它仅于内部可见不能直接引用。当DataFrame的列名相同时,指定引用一个列会出现问题,在以下两种情况下可能会发生问题:

(1)指定的join表达式没有将执行join操作的两个同名列的其中一个key删除。

(2)操作的两个DataFrame中的非join列同名。

接下来创建一个问题数据集,以便说明这些问题:

val gradProgramDupe = graduateProgram.withColumnRenamed("id","graduate_program")
val joinExpr = gradProgramDupe.col("graduate_program") === person.col(
                                                                      "graduate_program")

注意现在有两个graduate_program列,将基于该列做join操作,当引用其中一个列时,就会出现问题:

person.join(gradProgramDupe,joinExpr).select("graduate_program").show()

这个代码将返回一个错误。在这个特定的例子中,Spark会产生此错误消息:

org.apache.spark.sql.AnalysisException:Reference 'graduate_program' is ambiguous,could be:graduate_program#40,graduate_program#1079.

解决冲突的方法有以下三种:

(1)当有两个同名的键时,最简单的解决方法是将join表达式从布尔表达式更改为字符串或序列。这会在连接过程中自动删除其中一个列:

person.join(gradProgramDupe,"graduate_program").select("graduate_program").show()

(2)另一种方法是在连接后删除有冲突的列。在执行此操作时需要通过原始源DataFrame引用该列,如果连接使用相同的键名,或者源DataFrame具有同名的列,则可以执行此操作:

person.join(gradProgramDupe,joinExpr).drop(person.col("graduate_program"))
      .select("graduate_program").show()
val joinExpr = person.col("graduate_program") === graduateProgram.col("id")
person.join(graduateProgram,joinExpr).drop(graduateProgram.col("id")).show()

(3)如果在连接之前重命名其中一个列,则可以完全避免此问题:

val gradProgram3 = graduateProgram.withColumnRenamed("id","grad_id")
val joinExpr = person.col("graduate_program") === gradProgram3.col("grad_id")
person.join(gradProgram3,joinExpr).show()

49. 要了解Spark如何执行join操作,需要了解两个起作用的核心模块:点对点通信模式(node-to-node communication strategy)和逐点计算模式(per node computation strategy)。理解Spark执行join操作的过程将会决定Spark作业是否会较快完成还是会执行失败。在join过程中,Spark以两种不同的方式处理集群通信问题,它要么执行导致all-to-all通信的shuffle join,要么就采用broadcastjoin当用一个大表连接另一个大表时,最终就是个shufflejoin,如下图所示:

执行shuffle join则每个节点都与所有其他节点进行通信,并根据哪个节点具有(正用于join的)某个键或某一组键来共享数据。由于网络会因通信量剧增而阻塞,所以这种方式很耗时。上图中DataFrame 1和DataFrame 2都是数据量很大的DataFrame,这意味着如果没有合理进行数据分区,所有worker节点(以及潜在的每个分区)在整个连接过程中都需要相互通信

当表的大小足够小以便能够放入单个节点内存中且还有空闲空间的时候,这时候使用broadcast join通常更高效。也就是说可以把数据量较小的DataFrame复制到集群中的所有worker节点上。虽然听起来很耗时,但这样做会避免在整个连接过程中执行all-to-all的通信,只需在开始时执行一次,然后让每个worker节点独立执行作业,而无需等待其他worker节点,也无需与其他工作节点通信,如下图所示:

这种join通信模式在开始时会有一次大的通信,就像大表之间join时一样。但是在第一次通信后,节点之间将不再有其他的通信,这意味着join操作将在每个节点上独立执行,而最大限度的利用CPU资源专注于执行join操作。对于当前的数据集,通过查看Spark解释方案可以看到Spark自动将其设置为基于broadcast通信模式的join操作:

val joinExpr = person.col("graduate_program") === graduateProgram.col("id")
person.join(graduateProgram, joinExpr).explain()

== Physical Plan ==
*BroadcastHashJoin [graduate_program#40], [id#5....
:-LocalTableScan [id#38, name#39, graduate_progr...
+-BroadcastExchange HashedRelationBroadcastMode(....
+-LocalTableScan [id#56, degree#57, departmen....

通过DataFrame API还可以显式地告知优化器,使用broadcast函数作用于较小DataFrame上并执行broadcast join。在下面这个例子中将看到相同的物理执行计划,然而并不总是如此:

import org.apache.spark.sql.functions.broadcast
val joinExpr = person.col("graduate_program") === graduateProgram.col("id")
person.join(broadcast(graduateProgram), joinExpr).explain()

SQL 接口支持显式指定连接操作的物理通信模式,但这些并不是强制执行的,所以优化程序可能会选择忽略它们。可以使用特殊的注释语法来设置一个提示,MAPJOIN、BROADCAST和BROADCASTJOIN都是指示同样的broadcast join:

SELECT /*+ MAPJOIN(graduateProgram) */ * FROM person JOIN graduateProgram
ON person.graduate_program = graduateProgram.id

这也不是毫无开销的,如果试图广播太大的表,可能导致driver节点OOM。

六、DataSource

50. 两个执行join操作的数据集顺序不同也会影响性能,因为join操作中在前面或后面的数据集往往起到过滤器的作用,过滤器的大小会决定网络传输的通信开销,这是Spark job性能的一个很简单的方法。在介绍对特定文件格式的读写操作之前,先来看看Data Source API的整体组织结构。读取数据的核心结构如下:

DataFrameReader.format(...).option("key", "value").schema(...).load()

Spark数据读取使用DataFrameReader,通过SparkSession的read属性得到。format是可选的,默认情况下Spark将使用Parquet格式,option能配置键值对(key-value)来参数化读取数据的方式。如果DataSource包含某种schema或想使用模式推理(schema inference),则可以选择指定schema,每种文件格式都有一些必选项。下面是一个整体结构的例子:

spark.read.format("csv")
     .option("mode", "FAILFAST")
     .option("inferSchema", "true")
     .option("path", "path/to/file(s)")
     .schema(someSchema)
     .load()

从外部源读取数据很容易会遇到错误格式的数据,尤其是在处理半结构化数据时。读取模式指定当Spark遇到错误格式的记录时应采取什么操作,下表中列出了读取模式的选项,默认是permissive:

写数据的核心结构如下:

DataFrameWriter.format(...).option(...).partitionBy(...).bucketBy(...).sortBy(...).save()

PartitionBy、bucketBy和sortBy仅适用于基于文件的数据源,可以使用这些方法来控制写出目标文件的具体结构。写数据与读取数据非常相似,不同的是需要用到的是DataFrameWriter而不是DataFrameReader了。因为总是需要将数据写入一些给定数据源中,所以通过每个DataFrame的write属性来获取DataFrameWriter。有了DataFrameWriter之后,需要指定三个值:format、一系列option选项和save模式,并且必须至少提供一条写入路径来指定目标地址。需要注意的是,不同数据源的option可选项未必相同,一个写入例子如下所示:

dataframe.write.format("csv")
         .option("mode", "OVERWRITE")
         .option("dateFormat", "yyyy-MM-dd")
         .option("path", "path/to/file(s)")
         .save()

51. 保存模式指明如果Spark在指定目标路径发现有其他数据占用时应采取什么操作。下表列出了保存模式的选项,默认值为errorIfExists:

现在详细介绍一下Spark的各种原生DataSource。CSV即逗号分隔值(comma-separated values),这是一种常见的文本文件格式,其中每行表示一条记录,用逗号分隔记录中的每个字段。虽然CSV文件看起来结构良好,但实际上它会遇到各种各样的问题,是最难处理的文件格式之一,这是因为实际应用场景中遇到的数据内容或数据结构并不会那么规范。因此CSV读取程序包含大量option,通过这些选项可以帮助解决像忽略特定字符等的这种问题,比如当一列的内容也以逗号分隔时,需要识别出该逗号是列中的内容还是列间分隔符。

与读取其他格式一样,要读取CSV文件必须首先为该特定格式创建一个DataFrameReader,format指定为CSV。下面为CSV文件设置了一些option,即header为true、mode为FAILFAST以及inferSchema为true,如下所示:

spark.read.format("csv")
     .option("header", "true")
     .option("mode", "FAILFAST")
     .option("inferSchema", "true")
     .load("some/path/to/file.csv")

如上所述,可以使用该模式来指定对错误格式数据的容错数量。例如,可以使用这些modes以及schema以确保文件符合所期望的数据:

import org.apache.spark.sql.types.{StructField, StructType, StringType, LongType}
val myManualSchema = new StructType(Array(
    new StructField("DEST_COUNTRY_NAME", StringType, true),
    new StructField("ORIGIN_COUNTRY_NAME", StringType, true),
    new StructField("count", LongType, false)
))
spark.read.format("csv")
     .option("header", "true")
     .option("mode", "FAILFAST")
     .schema(myManualSchema)
     .load("/data/flight-data/csv/2010-summary.csv")
     .show(5)

当不希望数据以某种格式出现时,事情就变得棘手了。例如采取当前的schema但是将所有列类型更改为LongType,这与实际的schema并不匹配,但此时Spark并不会报错。只有当Spark实际读取数据时,问题才会暴露出来。一旦开始执行Spark作业,由于数据不符合指定的schema,它会(在执行作业之后)立即失败。通常Spark只会在作业执行时而不是DataFrame定义时发生失败,例如即使指向一个不存在的文件也是这样,这是由于惰性执行造成的

同读取数据一样,写CSV 文件时也有多种option。写入选项是读取选项的子集,因为很多选项在写入数据时并不适用(例如maxColumns和inferSchema)。下面是一个示例:

val csvFile= spark.read.format("csv")
    .option("header", "true").option("mode", "FAILFAST").schema(myManualSchema)
    .load("/data/flight-data/csv/2010-summary.csv")

例如可以读取CSV文件内容并写入TSV,如下所示:

csvFile.write.format("csv").mode("overwrite").option("sep", "\t")
       .save("/tmp/my-tsv-file.tsv")

当列出目标目录时,可以看到my-tsv-file实际上是一个包含大量文件的文件夹:

$ ls /tmp/my-tsv-file.tsv/
/tmp/my-tsv-file.tsv/part-00000-35cf9453-1943-4a8c-9c82-9f6ea9742b29.csv

52. 在Spark中提及的JSON文件指的是换行符分隔的JSON,每行必须包含一个单独的、独立的有效JSON对象,这与包含大的JSON对象或数组的文件是有区别的。换行符分隔JSON对象可以跨越多行,这个可以由multiLine选项控制,当multiLine为true时则可以将整个文件作为一个json对象读取,并且Spark将其解析为DataFrame。

换行符分隔的JSON实际上是一种更稳定的格式,因为它可以在文件末尾追加新记录(而不是必须读入整个文件然后再写出),一般也建议使用换行符分隔的格式。由于JSON结构化对象封装的原因,导致JSON文件option比CSV的要少得多。来看一个读取JSON文件的例子,并比较其中的option:

spark.read.format("json").option("mode", "FAILFAST").schema(myManualSchema)
     .load("/data/flight-data/json/2010-summary.json").show(5)

写JSON文件和读JSON文件一样简单,而且无论要写出的数据是什么格式。因此可以重用上面创建的CSV DataFrame,将其里面内容写入到一个JSON文件里。这也遵循之前指定的规则:每个数据分片作为一个文件写出,而整个DataFrame将输出到一个文件夹。文件中每行仍然代表一个JSON对象:

csvFile.write.format("json").mode("overwrite").save("/tmp/my-json-file.json")

Parquet的option很少,因为它在存储数据时执行本身的schema。如果对DataFrame的模式(schema)有严格的要求,则可以设置schema。一般来说在读取的时候使用默认的schema就不需要再设置了,这类似于CSV文件的inferSchema。然而由于schema内置于文件中不需要推断,所以Parquet文件格式更强大。以下是一些从parquet中读写数据的简单例子:

spark.read.format("parquet")
     .load("/data/flight-data/parquet/2010-summary.parquet").show(5)
csvFile.write.format("parquet").mode("overwrite")
       .save("/tmp/my-parquet-file.parquet")

但如果使用的是不兼容的Parquet文件仍然会遇到问题,当使用不同版本的Spark(尤其是旧版本时)写入Parquet文件时要小心。

ORC是为Hadoop作业而设计的自描述、类型感知的列存储文件格式。它针对大型流式数据读取进行优化,但集成了对快速查找所需行的相关支持。实际上读取ORC文件数据时没有option,这是因为Spark非常了解该文件格式。ORC和Parquet在大多数情况下非常相似;本质区别是Parquet针对Spark进行了优化,而ORC则是针对Hive进行了优化。读写ORC的例子如下所示:

spark.read.format("orc").load("/data/flight-data/orc/2010-summary.orc").show(5)
csvFile.write.format("orc").mode("overwrite").save("/tmp/my-json-file.orc")

53. 因为很多系统的标准语言都采用SQL,所以SQL数据源是很强大的连接器,只要支持SQL就可以和许多系统兼容。例如可以连接到MySQL数据库、PostgreSQL数据库或Oracle数据库,还可以连接到SQLite,接下来的例子就是连接SQLite。数据库并不是一些数据文件,而是一个系统。读写这些数据库需要两步:Spark类路径中为指定的数据库包含JavaDatabase Connectivity(JDBC)驱动,并为连接driver提供合适的JAR。例如为了能够读写PostgreSQL数据库,可能需要运行如下命令:

./bin/spark-shell \
--driver-class-path postgresql-9.4.1207.jar \
--jars postgresql-9.4.1207.jar

从SQL数据库读取文件和之前看到的其他数据源没有什么不同,与其他数据源一样先指定格式(format)和选项,然后加载数据:

val driver = "org.sqlite.JDBC"
val path = "/data/flight-data/jdbc/my-sqlite.db"
val url = s"jdbc:sqlite:/${path}"
val tablename = "flight_info"

定义连接属性后,可以测试与数据库的连接以确保其正常工作。这是一个很好的故障排除方法,可以确认数据库(至少)对Spark driver可用。这对SQLite来说意义不大,因为它只是计算机上的一个文件(随时保证可用),但如果使用的是MySQL之类的数据库,则可以使用以下命令测试连接

import java.sql.DriverManager
val connection = DriverManager.getConnection(url)
connection.isClosed()
connection.close()

如果连接成功就能继续执行下一步,SQLite需要的配置非常简单(比如没有用户概念),而其他数据库(比如PostgreSQL)则需要配置更多的参数。现在使用PostgreSQL来执行读取操作:

val pgDF = spark.read
    .format("jdbc")
    .option("driver", "org.postgresql.Driver")
    .option("url", "jdbc:postgresql://database_server")
    .option("dbtable", "schema.tablename")
    .option("user", "username").option("password","my-secret-password").load()

在此创建的DataFrame和以前的并没什么区别:对它执行select、transformation和join都没有问题。还会注意到这已经有一个schema模式,这是因为Spark从表本身收集这些数据,并将其类型映射为对应的Spark数据类型。接下来获取去重(distinct)后的国家字段,以验证是否可以按预期对它执行查询:

dbDataFrame.select("DEST_COUNTRY_NAME").distinct().show(5)

+-----------------+
|DEST_COUNTRY_NAME|
+-----------------+
| Anguilla|
| Russia|
| Paraguay|
| Senegal|
| Sweden|
+-----------------+

54. 在实际创建DataFrame之前,Spark会通过谓词下推和懒执行尽力提前过滤数据库中要扫描的数据。例如可以从查询计划中看到它从表中只选择相关的列名:

dbDataFrame.select("DEST_COUNTRY_NAME").distinct().explain

== Physical Plan ==
*HashAggregate(keys=[DEST_COUNTRY_NAME#8108], functions=[])
+-Exchange hashpartitioning(DEST_COUNTRY_NAME#8108, 200)
  +-*HashAggregate(keys=[DEST_COUNTRY_NAME#8108], functions=[])
    +-*Scan JDBCRelation(flight_info) [numPartitions=1] ...

在某些查询中Spark实际上可以做得更好。例如如果在DataFrame上指定一个filter,Spark就会将过滤器函数下推到数据库端,可以在解释计划(explain plan)中看到PushedFilters的操作,如下所示:

dbDataFrame.filter("DEST_COUNTRY_NAME in ('Anguilla', 'Sweden')").explain

== Physical Plan ==
*Scan JDBCRel... PushedFilters: [*In(DEST_COUNTRY_NAME, [Anguilla,Sweden])],
...

Spark不能把它的所有函数API转换为SQL数据库中的函数,因此有时要用SQL作为DataFrame返回。这可能看起来有点复杂但实际上很简单,只需要指定SQL查询而非指定表名,将查询语句包含在圆括号内,然后对其重命名。下面例子将其重命名为同一表名flight_info:

val pushdownQuery = """(SELECT DISTINCT(DEST_COUNTRY_NAME) FROM flight_info)
                        AS flight_info"""
val dbDataFrame = spark.read.format("jdbc")
    .option("url", url).option("dbtable", pushdownQuery).option("driver", driver)
    .load()

当查询此表时,实际上查询的是那个SQL语句的查询结果。查看解释计划(explainplan)可以看到这一点,Spark甚至不知道表的实际schema,只知道查询产生的结果:

dbDataFrame.explain()

== Physical Plan ==
*Scan JDBCRelation(
(SELECT DISTINCT(DEST_COUNTRY_NAME)
FROM flight_info) as flight_info
) [numPartitions=1] [DEST_COUNTRY_NAME#788] ReadSchema: ...

55. Spark有一个底层算法,可以将多个文件放入一个数据分片,或者反过来将一个文件划分到多个数据分片,这取决于文件大小以及文件类型和压缩格式是否允许split。SQL数据库中也存在与文件一样的分片灵活性,但是必须手动配置它。正如前面介绍的option配置,可以通过指定最大分区数量来限制并行读写的最大数量

val dbDataFrame = spark.read.format("jdbc")
    .option("url", url).option("dbtable", tablename).option("driver", driver)
    .option("numPartitions", 10).load()

可以在join中显式地将谓词下推到SQL数据库中执行,这有利于通过指定谓词来控制分区数据的物理存放位置,来看一个简单的示例,假设仅需要来自两个国家的数据:安圭拉和瑞典,可以对它们进行过滤,并将过滤查询操作下推到数据库,但是在Spark中还可以进一步指定需要过滤国家的数据放入同一个分区,下面在创建DataSource时指定谓词列表来实现此操作:

val props = new java.util.Properties
props.setProperty("driver", "org.sqlite.JDBC")
val predicates = Array(
    "DEST_COUNTRY_NAME = 'Sweden' OR ORIGIN_COUNTRY_NAME = 'Sweden'",
    "DEST_COUNTRY_NAME = 'Anguilla' OR ORIGIN_COUNTRY_NAME = 'Anguilla'")
spark.read.jdbc(url, tablename, predicates, props).show()
spark.read.jdbc(url, tablename, predicates, props).rdd.getNumPartitions // 2

+-----------------+-------------------+-----+
|DEST_COUNTRY_NAME|ORIGIN_COUNTRY_NAME|count|
+-----------------+-------------------+-----+
| Sweden| United States| 65|
| United States| Sweden| 73|
| Anguilla| UnitedStates| 21|
| United States| Anguilla| 20|
+-----------------+-------------------+-----+

如果指定的谓词集合不相交,则会出现大量重复行。以下是一组会产生重复行的谓词集示例:

val props = new java.util.Properties
props.setProperty("driver", "org.sqlite.JDBC")
val predicates = Array(
    "DEST_COUNTRY_NAME != 'Sweden' OR ORIGIN_COUNTRY_NAME != 'Sweden'",
    "DEST_COUNTRY_NAME != 'Anguilla' OR ORIGIN_COUNTRY_NAME != 'Anguilla'")
spark.read.jdbc(url, tablename, predicates, props).count() // 510

56. 接下来介绍如何基于谓词进行分区,在下面示例中将基于数值型的count列进行分区。在这里为第一个分区和最后一个分区分别制定一个最小值和一个最大值,超出该范围的数据将存放到第一个分区或最后一个分区;接下来指定分区总数(这是为了并行操作)。然后Spark会并行查询数据库,并返numPartitions个分区,只需修改count列数值的上界和下界,即可将数据相应地存放到各个分区中,该例子没有像上一个示例一样进行过滤操作,会根据count列数值从小到大均匀划分10个间隔区间的数据,之后每个区间数据被分配到一个分区:

val colName= "count"
val lowerBound = 0L
val upperBound = 348113L // 这是数据集最大行数
val numPartitions = 10
spark.read.jdbc(url,tablename,colName,lowerBound,upperBound,numPartitions,props)
     .count() // 255

写入SQL数据库和之前一样简单,只需指定URI并指定写入模式来写入数据即可。在下面的示例中指定写入模式为overwrite,并使用之前定义的CSV DataFrame来实现此操作:

val newPath = "jdbc:sqlite://tmp/my-sqlite.db"
csvFile.write.mode("overwrite").jdbc(newPath, tablename, props)
spark.read.jdbc(newPath, tablename, props).count() // 255

当然也可以在该表后面追加新数据,数据量也增加了:

csvFile.write.mode("append").jdbc(newPath, tablename, props)
spark.read.jdbc(newPath, tablename, props).count() // 765

Spark还支持读取纯文本文件,文件中的每一行将被解析为DataFrame 中的一条记录,然后根据要求进行转换。由于文本文件能够充分利用原生类型(native type)的灵活性,因此它很适合作为Dataset API的输入。读写文本文件只需在读时指定类型为textFile,写时需确保仅有一个字符串类型的列写出;否则写操作将失败:

spark.read.textFile("/data/flight-data/csv/2010-summary.csv").selectExpr("split(value, ',') as rows").show()

+--------------------+
| rows|
+--------------------+
|[DEST_COUNTRY_NAM...|
|[UnitedStates, R...|
...
|[United States, A...|
|[Saint Vincent an...|
|[Italy, United St...|
+--------------------+

csvFile.select("DEST_COUNTRY_NAME").write.text("/tmp/simple-text-file.txt")

如果在执行写操作时同时执行某些数据分片操作,则可以写入更多的列,但是这些列在要写入的文件夹中显示为多个目录,而不是每个文件中存在多列:

csvFile.limit(10).select("DEST_COUNTRY_NAME", "count")
       .write.partitionBy("count").text("/tmp/five-csv-files2.csv")

57. 可以通过在写入之前控制数据分片来控制写入文件的并行度,还可以通过控制数据分桶(bucketing)和数据分区(partitioning)来控制特定的数据布局方式。某些文件格式是"可分割的",因此Spark可以只获取该文件中满足查询条件的某一个部分,而无需读取整个文件,从而提高读取效率。此外HDFS文件如果包含多个文件块,分割文件则可进一步优化提高性能。与此同时需要进行压缩管理,并非所有的压缩格式都是可split的,一般推荐采用gzip压缩格式的Parquet文件格式

多个executor不能同时读取同一文件,但可以同时读取不同的文件。通常这意味着从包含多个文件的文件夹中读取时,每个文件都将被视为DataFrame的一个split,并由executor并行读取,超过并发数的文件会进入读取队列等候。写数据涉及的文件数量取决于DataFrame的分区数,默认情况是每个数据分片都会有一定的数据写入,这意味着虽然指定的是一个文件”,但实际上它是由一个文件夹中的多个文件组成,每个文件对应着一个数据split。以下是代码示例:

csvFile.repartition(5).write.format("csv").save("/tmp/multiple.csv")

它会生成包含五个文件的文件夹,调用ls命令就可以查看到:

ls /tmp/multiple.csv
/tmp/multiple.csv/part-00000-767df509-ec97-4740-8e15-4e173d365a8b.csv
/tmp/multiple.csv/part-00001-767df509-ec97-4740-8e15-4e173d365a8b.csv
/tmp/multiple.csv/part-00002-767df509-ec97-4740-8e15-4e173d365a8b.csv
/tmp/multiple.csv/part-00003-767df509-ec97-4740-8e15-4e173d365a8b.csv
/tmp/multiple.csv/part-00004-767df509-ec97-4740-8e15-4e173d365a8b.csv

数据分区支持在写入数据时控制存储什么数据以及存储数据的位置。将文件写出时可以将列划分为文件夹,使得在之后读取时可跳过大量数据,只读入相关的列数据而不必扫描整个数据集,极大提升读取程序的速度。所有基于文件的数据源都支持这些:

csvFile.limit(10).write.mode("overwrite").partitionBy("DEST_COUNTRY_NAME")
       .save("/tmp/partitioned-files.parquet")

写操作完成后,Parquet“文件”中就会有一个文件夹列表:

$ ls /tmp/partitioned-files.parquet
...
DEST_COUNTRY_NAME=Costa Rica/
DEST_COUNTRY_NAME=Egypt/
DEST_COUNTRY_NAME=Equatorial Guinea/
DEST_COUNTRY_NAME=Senegal/
DEST_COUNTRY_NAME=United States/

其中每一个目录都将包含Parquet文件,这些文件包含对应文件夹列名的数据:

$ ls /tmp/partitioned-files.parquet/DEST_COUNTRY_NAME=Senegal/
part-00000-tid.....parquet

58. 数据分桶(bucketing)是另一种文件组织方法,可以使用该方法控制写入每个文件的数据。具有相同桶ID (哈希分桶的ID)的数据将放置到一个物理分区文件中,这样就可以避免在稍后读取数据时进行shuffle。根据之后如何使用数据来对数据进行预分区,就可以避免join或聚合操作时执行代价很大的shuffle操作。与其根据某列进行数据划分,不如考虑对数据值进行分桶,某列如果存在很多不同的值,就可能写出一大堆目录,这将创建一定数量的bucket文件,数据分桶仅支持Spark的原生支持表:

//in Scala
val numberBuckets = 10
val columnToBucketBy = "count"
csvFile.write.format("parquet").mode("overwrite")
       .bucketBy(numberBuckets, columnToBucketBy).saveAsTable("bucketedFiles")

#in bash
$ ls/user/hive/warehouse/bucketedfiles/
part-00000-tid-1020575097626332666-8....parquet
part-00000-tid-1020575097626332666-8....parquet
part-00000-tid-1020575097626332666-8....parquet
...

管理文件大小对数据写入不那么重要,但对之后的读取很重要。当写入大量的小文件时,由于管理所有的这些小文件而产生很大的元数据开销,HDFS不能很好地处理大量的小文件,而Spark特别不适合处理小文件。文件不宜太小但也不宜太大,因为当只需要其中几行数据时,必须读取整个数据块就会效率低下。

Spark 2.2中引入了一种更自动控制文件大小的新方法。之前介绍了输出文件数量,与写入时数据分片数量以及选取的分区列有关,现在则可以利用另一个方法来限制输出文件大小,从而可以选出最优的文件大小:可以使用maxRecordsPerFile选项来指定每个文件的最大记录数,这样可以通过控制写入每个文件的记录数,来控制文件大小。例如将写文件(writer)的option设置为df.write.option(“maxRecordsPerFile”,5000),Spark将确保每个文件最多包含5000条记录。

七、SparkSQL

59. SparkSQL在Facebook投入使用后,经测试相比于Hive的流水线有了显著的性能改进和资源节省:约4.5–6倍的CPU、3–4倍的资源预留和大约5倍的延迟。SparkSQL可以与Hive metastores连接,Hive metastore维护了Hive跨session数据表的信息,使用SparkSQL可以连接到Hive metastore访问表的元数据,这可以在访问信息的时候减少文件扫描操作带来的开销

要连接到Hive metastore,首先需要设置Metastore版本(spark.SQL.hive.metastore.version),它对应于要访问的Hive metastore,默认情况下的版本号为1.2.1。如果要更改HiveMetastoreClient的初始化方式,则还需要设置spark.SQL.hive.metastore.jars。Spark使用默认版本,但也可以通过设置JVM来指定Mavenrepositories或classpath。此外,可能需要提供适当的类前缀,以便与存储Hive metastore 的不同数据库进行通信,要将这些设置为Spark和Hive共享的前缀(spark.SQL.hive.metastore.sharedPrefixes)。

Spark提供了以下几个接口来执行SQL查询

(1)Spark SQL CLI。它可以在本地模式的命令行中实现基本的Spark SQL查询。要注意SparkSQL CLI无法与Thrift JDBC服务器通信。要启动Spark SQL CLI, 要在Spark目录中运行以下内容:

./bin/spark-sql

然后将hive-site.xml,core-site.xml,hdfs-site.xml文件放入到spark安装目录的conf/中来配置Hive属性。

(2)Spark的可编程SQL 接口。除了启用服务器之外还可以通过任何Spark支持语言的API执行SQL,可以通过SparkSession对象上的sql方法来实现,这将返回一个DataFrame。例如在Scala中可以运行以下内容:

spark.sql("SELECT 1 + 1").show()

它返回一个DataFrame可以被后续处理,就像其他的transformation操作一样,它不会被立即执行而是惰性执行。这是一个非常强大的接口, 因为有一些transformation操作通过SQL代码表达要比通过DataFrame表达要简单得多。通过将多行字符串传入sql函数中, 可以很简单地表示多行查询,例如执行以下代码:

spark.sql("""SELECT user_id, department, first_name FROM professors WHERE department IN
             (SELECT name FROM department WHERE created_date >= '2016-01-01')""")

更强大的是,可以根据需要在SQL和DataFrame之间实现完全的互操作。例如可以创建一个DataFrame使用SQL操作它,然后再次将其作为DataFrame进行操作,可能经常会这么用:

spark.read.json("/data/flight-data/json/2015-summary.json")
     .createOrReplaceTempView("some_sql_view") // DataFrame转换为SQL
spark.sql("""
            SELECT DEST_COUNTRY_NAME, sum(count)
            FROM some_sql_view GROUP BY DEST_COUNTRY_NAME
          "")
     .where("DEST_COUNTRY_NAME like 'S%'").where("`sum(count)` > 10")
     .count() // SQL转换为DataFrame

Spark还提供了一个JDBC接口, 通过它可以连接到Spark driver以便执行Spark SQL查询,比如将BI软件如Tableau连接到Spark。此处实现的Thrift JDBC/ODBC服务器对应于Hive 1.2.1中的HiveServer2,可以使用带有Spark或Hive 1.2.1的beeline脚本来测试JDBC服务器。要启动JDBC/ODBC服务器, 要在Spark目录下运行以下内容:

./sbin/start-thriftserver.sh

此脚本支持全部bin/Spark-submit命令行选项。要查看配置此Thrift服务器的所有可用选项。默认情况下服务器监听localhost:10000,可以更改环境变量或系统属性来更新地址和端口。对于环境变量配置,要使用以下方法:

export HIVE_SERVER2_THRIFT_PORT=<listening-port> \
export HIVE_SERVER2_THRIFT_BIND_HOST=<listening-host> ./sbin/start-thriftserver.sh \
--master <master-uri> \
…

对于系统属性,可以参考下面:

./sbin/start-thriftserver.sh\
--hiveconf hive.server2.thrift.port=<listening-port> \
--hiveconf hive.server2.thrift.bind.host=<listening-host> \
--master <master-uri>
...

然后可以运行以下命令来测试此连接,Beeline将询问用户名和密码:

./bin/beeline
beeline> !connect jdbc:hive2://localhost:10000

60. Spark SQL中最高级别的抽象是Catalog,用于存储和访问表数据中的元数据等,如数据库、数据表、函数和视图。它在org.apache.spark.SQL.catalog.Catalog包中,包含用于执行诸如列举表、数据库和函数之类的操作,它实际上只是Spark SQL的另一个编程接口。

要使用Spark SQL来执行任何操作之前,首先需要定义数据表。数据表在逻辑上等同于DataFrame,因为它们都是承载数据的数据结构,数据表和DataFrame的核心区别在于:DataFrame是在编程语言范围内定义的,而数据表是在数据库中定义的。在创建表时(假定从未更改过数据库),这个数据表将属于默认数据库。需要注意的一个重要问题是, 在Spark2.X中数据表始终是实际包含数据的,没有类似视图(view)的临时表概念,只有视图不包含数据。这一点很重要,因为如果要删除一个表,可能会导致丢失数据。

托管表(managed table)和非托管表(unmanaged table)是很重要的概念。表存储两类重要的信息, Spark既可以管理一组文件的元数据也可以管理实际数据。当定义磁盘上的若干文件为一个数据表时, 这个就是非托管表;在DataFrame上使用saveAsTable函数来创建一个数据表时,就是创建了一个托管表Spark将跟踪托管表的所有相关信息和数据

在DataFrame上使用saveAsTable函数将读取表并将其写到一个新的位置(以Spark格式),可以看到这也体现在解释计划中。在解释计划中还会注意到这将写入到默认的Hive仓库位置。可以通过配置spark.SQL.warehouse.dir为创建SparkSession 时所选择的目录。默认情况下,Spark将此设置为/user/hive/warehouse,当然Spark自身也有数据库。如果在新集群或本地模式下运行,则show tables命令不会返回结果。

可以从多种数据源创建表,Spark支持在SQL中重用整个Data Source API,这意味着不需要首先定义一个表再加载数据,可以从某数据源直接创建表,从文件中读取数据时还可以指定各种复杂的选项。例如下面是一个简单的表创建方法来,使用之前用过的航班数据:

CREATE TABLE flights (
                      DEST_COUNTRY_NAME         STRING, 
                      ORIGIN_COUNTRY_NAME       STRING, 
                      count                     LONG)
USING JSON OPTIONS (path '/data/flight-data/json/2015-summary.json'

这里的USING语法代表创建DataSource表,如果未指定using这种写法而是使用stored as语句,则Spark将默认设置为Hive表SerDe配置,但是Hive SerDes比Spark的DataSource原生(native)序列化要慢得多,当然Hive用户也可以使用STORED AS语法来指定这是一个Hive表。建表时还可以向表中的某些列添加注释, 这样可以帮助其他开发人员了解表中的数据:

CREATE TABLE flights_csv (
     DEST_COUNTRY_NAME STRING,
     ORIGIN_COUNTRY_NAME STRING COMMENT "remember, the US will be most prevalent", 
     count LONG)
USING csv OPTIONS (header true, path '/data/flight-data/csv/2015-summary.csv')

还可以通过建立分区表来控制数据布局,如下所示:

CREATE TABLE partitioned_flights
USING parquet
PARTITIONED BY (DEST_COUNTRY_NAME) AS
SELECT DEST_COUNTRY_NAME, ORIGIN_COUNTRY_NAME, count FROM flights LIMIT 5

这些表可以在整个SparkSession中使用,而临时表不存在于Spark中,所以必须创建临时的视图。

61. 在大多数情况下,可以直接将Hive语句复制并粘贴到Spark SQL中。例如,在下面的示例中创建一个非托管表,Spark将管理表的元数据,但是数据文件不是由Spark管理,可以使用CREATE EXTERNAL TABLE语句来创建外部表:

CREATE EXTERNAL TABLE hive_flights (
                                    DEST_COUNTRY_NAME STRING, 
                                    ORIGIN_COUNTRY_NAME STRING, 
                                    count LONG)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LOCATION '/data/flight-data-hive/'

在写入分区表时可以写入某个分区,如下所示:

INSERT INTO partitioned_flights
PARTITION (DEST_COUNTRY_NAME="UNITED STATES")
SELECT count, ORIGIN_COUNTRY_NAME FROM flights
WHEREDEST_COUNTRY_NAME='UNITED STATES' LIMIT 12

有两个命令可以刷新表的元数据:

(1)REFRESH TABLE用来刷新与表关联的所有内存缓存项(实质上是文件)。如果之前查询过,spark内存中缓存了该表,refresh table后在下次扫描时会重新执行一次查询application,而不是直接返回内存中缓存过的结果,这样可以解决上次查过某个表,过了一会碰巧该表被其他任务写入修改过,导致第二次查询读取内存缓存造成file not exist异常

REFRESH table partitioned_flights

2)REPAIR TABLE用来刷新该表在catalog中维护的分区元数据,该语法重点是收集新的分区信息,作用类似于Hive中的add partition,可以解决例如HDFS数据文件存在,但是元数据中没有该分区信息的情况

MSCK REPAIR TABLE partitioned_flights

可以使用DROP关键字在删除托管表时,则实际数据和表定义元数据都将被删除,如果要删除非托管表则不会删除HDFS数据文件,但会删除元数据,无法再按表名引用此数据。与DataFrame一样可以选择在内存中缓存和不缓存表。只需使用以下语法:

CACHE TABLE flights
UNCACHE TABLE FLIGHTS

62. 在创建了一个表后,就可以定义视图了。定义视图即指定基于现有表的一组transformation操作,基本上只是保存查询计划,这可以方便地组织或重用查询逻辑。Spark有几种不同的视图概念,视图可以是全局的、针对某个数据库的、或针对每个session的。对于用户视图显示为表,但是数据并没有重写到新位置,它们只是在查询时对源数据执行转换操作,例如在下面的示例中,创建一个目的地为United States的视图以便仅查看那些特定目的地航班:

CREATE VIEW just_usa_view AS
SELECT * FROM flights WHERE dest_country_name = 'United States'

与表类似,也可以用create temp view创建仅在当前会话期间可用,且未注册到数据库的临时视图。还可以用create or replace view指定覆盖已创建的视图。视图实际上是一种transformation,Spark只会在实际查询时执行它实际上视图等同于从现有DataFrame创建新的DataFrame可以通过比较Spark DataFrame和Spark SQL生成的查询计划来看到这一点,在DataFrame中需要用如下语句:

//in Scala
val flights = spark.read.format("json")
    .load("/data/flight-data/json/2015-summary.json")
val just_usa_df = flights.where("dest_country_name = 'United States'") 
just_usa_df.selectExpr("*").explain

--in SQL
EXPLAIN SELECT * FROM flights WHERE dest_country_name = 'United States'

删除视图和删除表之间的主要区别是,在视图中不删除基础数据,只删除视图定义本身。可以通过运行以下命令来查看当前正在使用的数据库:

SELECT current_database()

有时候可能需要在SQL查询中依据某条件来替换值,可以通过使用case...when...then...end类型语句来实现,这实质上相当于程序中的if语句:

SELECT
CASE WHEN DEST_COUNTRY_NAME = 'UNITED STATES' THEN 1
     WHEN DEST_COUNTRY_NAME = 'Egypt' THEN 0
     ELSE -1 END
FROM partitioned_flights

63. Spark SQL中支持了三种复杂类型:结构体(struct),列表(list)和映射(map)。结构体类似于映射,它们提供了一种在Spark中创建或查询嵌套数据的方法。要创建一个struct,只需要在括号中包含一组列或表达式:

CREATE VIEW IF NOT EXISTS nested_data AS
SELECT (DEST_COUNTRY_NAME, ORIGIN_COUNTRY_NAME) as country, count FROM flights

可以这样查询结构中的一列:

SELECT country.DEST_COUNTRY_NAME, count FROMnested_data
SELECT country.*, count FROM nested_data

在Spark SQL中有两种创建列表的方式:collect_list可以创建一个包含值的列表,collect_set创建一个不含有重复值的列表。这两种函数都是聚合函数,因此只能够在聚合操作中指定

SELECT DEST_COUNTRY_NAME as new_name,
       collect_list(count) as flight_counts,
       collect_set(ORIGIN_COUNTRY_NAME) as origin_set
FROM flights GROUP BY DEST_COUNTRY_NAME

也可以通过设定值方法来创建数组,如下所示:

SELECT DEST_COUNTRY_NAME, ARRAY(1, 2, 3)FROM flights

还可以使用类似Python 的数组查询语法,按位置查询列表:

SELECT DEST_COUNTRY_NAME as new_name,
       collect_list(count)[0]
FROM flights GROUP BY DEST_COUNTRY_NAME

还可以执行例如将数组元素转换为多行的操作,可以使用explode函数来执行此任务。为了演示这里创建一个包含聚合结果的新视图:

CREATE OR REPLACE TEMP VIEW flights_agg AS
SELECT DEST_COUNTRY_NAME,
       collect_list(count) as collected_counts 
FROM flights GROUP BY DEST_COUNTRY_NAME

现在将复杂类型数组中的每个值作为结果中的一行。DEST_COUNTRY_NAME将被重复复制到数组中的每个值,执行与collect_list相反的操作,返回一个DataFrame:

SELECT explode(collected_counts), DEST_COUNTRY_NAME FROM flights_agg

SparkSQL还允许使用UDF,可以定义函数后注册该函数:

def power3(number:Double):Double = number * number * number
spark.udf.register("power3", power3(_:Double):Double)

SELECT count, power3(count) FROM flights

64. 还可以在其他查询中指定子查询,在Spark中有两个基本子查询:相关子查询(Correlated Subquery)使用来自查询外的一些信息,不相关子查询(Uncorrelated Subquery)不包括外部的信息。Spark还包括对谓词子查询(Predicate Subquery)的支持,它允许基于值进行筛选。例如来看看谓词子查询,第一个例子只是获取流量最大的前五个国家目的地:

SELECT dest_country_name FROM flights
GROUP BY dest_country_name ORDER BY sum(count) DESC LIMIT 5

+-----------------+
|dest_country_name|
+-----------------+
| United States|
| Canada|
| Mexico|
| United Kingdom|
| Japan|

第二个例子是将此子查询放入where子句中,并检查出发地国家是否存在于这个列表中:

SELECT * FROM flights
WHERE origin_country_name IN (SELECT dest_country_name FROM flights GROUP BY dest_country_name ORDER BY sum(count) DESC LIMIT 5)

此查询是不相关的,因为它不包含来自查询外部的信息。相关谓词子查询允许在内部查询中使用外部作用域的信息。例如,如果想查看是否有航班从目的地国家飞回出发地国家,可以检查是否有将目的地国家作为起飞国家,并且将起飞地作为目的地国家的航班:

SELECT * FROM flights f1
WHERE EXISTS (SELECT 1 FROM flights f2
WHERE f1.dest_country_name = f2.origin_country_name)
AND EXISTS (SELECT 1 FROM flights f2
WHERE f2.dest_country_name = f1.origin_country_name)

EXISTS仅检查子查询是否有某值,如果有值则返回true。可以通过将NOT运算符置于它前面来实现相反的检查,这意味着寻找一个到达目的地但无法返回的航班。

八、DataSet

65. Dataset具有严格的JVM语言特性,仅与Scala和Java一起使用,可以定义Dataset中每一行所包含的对象,在Scala中就是一个case类对象,它实质上定义了一种模式schema,而在Java中就是Java Bean,用户经常将Dataset称为Spark中的“类型化API”,因为Dataset在编译时检查类型,而DataFrame在运行时检查类型

使用DataFrame API时,不需要创建字符串或整数,Spark就可以通过操作Row对象来处理数据。如果使用Scala 或Java,则所有DataFrame实际上都是Row类型的Dataset。为了有效地支持特定领域的对象,需要一个称为“编码器(Encoder)”的特殊概念,编码器将特定类型T映射为Spark的内部类型。

例如给定一个类Person具有两个字段,名称(string)和年龄(int),编码器保证Spark在运行时生成代码以序列化Person对象为二进制结构。使用DataFrame或标准结构化API时,此二进制结构就是Row类型。当要创建自定义对象时,可以在Scala中指定一个case类,或者在Java中通过JavaBean,这样可以通过Spark操作此对象(这样的自定义对象不是Row类型)。当使用Dataset API时,会将Spark Row格式的每一行转换为指定的特定类型对象(case类或Java 类)。此转换会减慢一点点操作速度,但可以提供更大的灵活性

如果在使用Dataset时损失性能,为什么还要使用它们呢?有这几个主要原因:

(1)当要执行的操作无法使用DataFrame操作表示时

(2)如果需要类型安全,并且愿意牺牲一定性能来实现它

有些操作不能使用内置的结构化API来表示,虽然这不是很常见,但可能有业务逻辑想用特定的函数而非SQL或DataFrame来实现,这就要用到Dataset了。此外因为Dataset API是类型安全的,对于其类型无效的操作(例如两个字符串类型相减)将在编译时出错,而不是在运行时失败,如果正确性和防御性代码是更需要考虑的事情,那么牺牲一些性能可能是最佳选择。这不能保证不接受格式错误的数据,但可以更方便地处理它。

使用Dataset的另一种情况是,在单节点作业和Spark作业之间重用对行的各种transformation代码。Spark的API包含了Scala Sequence类型,但它们以分布式方式运行。使用Dataset的一个优点是,如果将所有数据和transformation定义为case类,那么在分布式和单机作业中使用它们没什么区别。此外当在本地磁盘存储DataFrame时,它们一定是正确的类和类型,这使进一步的操作更容易。

较主流的应用场景是先用DataFrame和再用Dataset的情况,这可以手动在性能和类型安全之间进行权衡。比如当基于DataFrame执行ETL转换作业之后,想将数据送入driver并使用单机库操作时,或者是当需要在Spark SQL中执行过滤和进一步操作之前,进行每行分析的预处理转换操作时。

66. 创建Dataset有些是手动操作,要求提前知道和定义数据schema。Java编码器相当简单,只需指定类然后在需要DataFrame(即Dataset<Row>类型)的时候对该类进行编码:

import org.apache.spark.sql.Encoders;

public class Flight implements Serializable{
    String DEST_COUNTRY_NAME;
    String ORIGIN_COUNTRY_NAME;
    Long DEST_COUNTRY_NAME;
}
Dataset<Flight> flights = spark.read
                               .parquet("/data/flight-data/parquet/2010-summary.parquet/")
                               .as(Encoders.bean(Flight.class));

在Scala 中创建Dataset,要定义Scala的case类,case类是具有以下特征的类:

(1)不可变;(2)通过模式匹配可分解,来获取类属性;(3)允许基于结构的比较而不是基于引用的比较;(4)易于使用和操作。这些特点对于数据分析很有用,因为case类很容易解析,而最重要的特性应该是case类的不变性,可以通过内容结构而不是引用进行比较。总的来说case类有以下优点:

(1)不变性使得无需跟踪对象变化的时间和位置。

(2)“按值比较”允许直接比较实例的值,就像它们是基本类型值(primitive value)一样,这样就避免了不同类型组成的对象实例基于值或基于引用比较所带来的不确定性。

(3)模式匹配简化了分支逻辑,从而会引起更少的bug和带来可读性更好的代码。

用Scala创建Dataset,首先要为数据集定义一个case class:

case class Flight(DEST_COUNTRY_NAME:String,
                  ORIGIN_COUNTRY_NAME:String,
                  count:BigInt)

现在定义了case class,它表示数据中的单个记录。更简单地说,它是一个包含Flight类型的Dataset,只有模式没有方法。当读数据时会得到一个DataFrame,可以使用as方法将其强制转换为指定的行类型:

val flightsDF = spark.read
    .parquet("/data/flight-data/parquet/2010-summary.parquet/")
val flights = flightsDF.as[Flight]

当实际去访问这些case class时,不需要执行任何类型强制转化,只需指定case class的属性名并返回,返回包括预期值和预期类型:

flights.first.DEST_COUNTRY_NAME // 结果是United States

Dataset上的transformation操作与DataFrame上的相同。除了那些转换操作之外,Dataset还允许指定比DataFrame转换更复杂和强类型的转换操作,因为Dataset可以操作底层的JVM类型。为了说明这个底层对象操作,可以在刚创建的Dataset上执行filter过滤操作,创建一个接受Flight为参数的简单函数,它返回一个判断出发地和目的地是否相同的Boolean,这是一个自定义的通用函数(generic function),但不属于SparkSQL UDF的范畴:

def originIsDestination(flight_row: Flight): Boolean = {
    return flight_row.ORIGIN_COUNTRY_NAME == flight_row.DEST_COUNTRY_NAME
}

通过指定filter()括号中的函数,强制Spark在Dataset中的每一行上验证此函数,这可能非常耗资源,对于简单过滤器,应总是首选编写SQL表达式,这将大大降低过滤数据的开销,同时仍允许稍后将其作为Dataset进行操作。接下来可以将上面的自定义函数传递到filter()方法中,指定每行应验证此函数是否返回true,并相应地过滤Dataset:

flights.filter(flight_row => originIsDestination(flight_row)).first()

结果是:

Flight = Flight(United States,United States,348113)

67. 过滤是一个简单的转换操作,但有时需要将一个值映射转化(map)到另一个值。上面示例函数的输入参数是一个flight,并返回一个布尔值,但是有时候需要执行一些更复杂的操作,比如提取一个数值、比较一组值等。最简单的示例是从Dataset的每行中提取一个值,该示例中提取目的地:

val destinations = flights.map(f => f.DEST_COUNTRY_NAME)

这里会返回String类型的Dataset,这是因为Spark已经知道这个结果应该返回的JVM 类型。Dataset中的join操作用法与DataFrame一样,但是Dataset还提供了更复杂的方法,即joinWith方法。joinWith大致等同于一个co-group(RDD术语),将两个Dataset整合成一个,每一列都表示一个Dataset,并可以相应地进行操作。当需要在join操作中维护更多信息,或执行一些更复杂的操作(如高级映射或筛选) 时,这可能很有用。来创建一个假的flight元数据(metadata)的Dataset来演示joinWith:

case class FlightMetadata(count: BigInt, randomData: BigInt)
val flightsMeta = spark.range(500).map(x => (x, scala.util.Random.nextLong))
    .withColumnRenamed("_1", "count").withColumnRenamed("_2", "randomData")
    .as[FlightMetadata]
val flights2 = flights
    .joinWith(flightsMeta, flights.col("count") === flightsMeta.col("count"))

这里输出包含一个键值对的Dataset,其中每一行表示一个Flight和Flight元数据(Metadata)。当然,可以查询这些Dataset或具有复杂类型的DataFrame:

flights2.selectExpr("_1.DEST_COUNTRY_NAME")

还可以把该DataFrame转换回Dataset。还需要注意的是,连接DataFrame和Dataset也完全没有问题,如下所示:

val flights2 = flights.join(flightsMeta.toDF(), Seq("count"))

68. 分组(grouping)和聚合(aggregation)基本上和DataFrame的聚合操作差不多,因此groupBy rollup和cube仍可用,但它们返回DataFrame而不是Dataset(丢失类型信息):

flights.groupBy("DEST_COUNTRY_NAME").count()

丢失类型信息通常不会造成太大的损失,但如果想保留类型信息也有其他方法可以执行分组和聚合,一个很好的示例是groupByKey方法,它可以按Dataset中的特定键进行分组,并返回具有类型信息的Dataset但是此方法接受一个函数而非特定的列名,使得可以指定更复杂的分组功能,这个函数更类似于以下内容:

flights.groupByKey(x => x.DEST_COUNTRY_NAME).count()

虽然这提供了灵活性,但需要权衡,因为现在引入了JVM 类型以及无法被Spark优化的函数,这意味着会产生性能差异,检查解释计划时可以看到这一点。下面会看到正在高效地追加一个新列到DataFrame (分组函数的结果),然后在该列上执行分组:

flights.groupByKey(x => x.DEST_COUNTRY_NAME).count().explain

== Physical Plan ==
*HashAggregate(keys=[value#1396], functions=[count(1)])
+-Exchange hashpartitioning(value#1396, 200)
+-*HashAggregate(keys=[value#1396], functions=[partial_count(1)])
+-*Project [value#1396]
+-AppendColumns <function1>, newInstance(class ...
[staticinvoke(class org.apache.spark.unsafe.types.UTF8String, ...
+-*FileScan parquet [D...

在Dataset上根据某key执行group by后,就可以在Key Value Dataset上根据定义的函数操作数据,该函数将分组作为原始对象操作:

def grpSum(countryName:String, values: Iterator[Flight]) = {
    values.dropWhile(_.count < 5).map(x => (countryName, x))
}
flights.groupByKey(x => x.DEST_COUNTRY_NAME).flatMapGroups(grpSum).show(5)

+--------+--------------------+
| _1| _2|
+--------+--------------------+
|Anguilla|[Anguilla,United ...|
|Paraguay|[Paraguay,United ...|
| Russia|[Russia,United St...|
| Senegal|[Senegal,United S...|
| Sweden|[Sweden,United St...|
+--------+--------------------+

def grpSum2(f:Flight):Integer = {
    1
}
flights.groupByKey(x => x.DEST_COUNTRY_NAME).mapValues(grpSum2).count().take(5)

甚至可以创建新的操作并定义如何执行reduceGroups聚合:

def sum2(left:Flight, right:Flight) = {
    Flight(left.DEST_COUNTRY_NAME, null, left.count + right.count)
}
flights.groupByKey(x => x.DEST_COUNTRY_NAME).reduceGroups((l, r) => sum2(l, r))
       .take(5)

很容易看出这是一个比扫描后立即聚合(直接调用groupBy)更耗时的过程,况且它得到的是相同的结果:

flights.groupBy("DEST_COUNTRY_NAME").count().explain

== Physical Plan ==
*HashAggregate(keys=[DEST_COUNTRY_NAME#1308], functions=[count(1)])
+-Exchange hashpartitioning(DEST_COUNTRY_NAME#1308, 200)
+-*HashAggregate(keys=[DEST_COUNTRY_NAME#1308], functions=[partial_count(1)])
+-*FileScan parquet [DEST_COUNTRY_NAME#1308] Batched: tru...

所以仅在用户定义group by聚合时,使用Dataset才有意义,这可能在数据处理的开头或结束的位置。

  • 2
    点赞
  • 2
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值