n枚硬币正面向上的期望

这是一篇关于计算投掷均匀硬币时,已知一定数量正面和反面,求剩余硬币中正面向上期望值的问题。通过利用期望公式EX=∑iip(x=i),可以得出期望值,并在特定情况下对1000000007取模。示例给出了具体计算过程,但未说明取模方法。
摘要由CSDN通过智能技术生成

题目:
投掷n枚均匀硬币,已知有p枚正面,q枚反面,请问n枚硬币中正面向上的硬币数量的期望。

输入:n p q
输出正面的硬币数量的期望,由于答案可能包含小数,请输出答案对1000000007(8个0)取模的结果。

示例:

输入:2 1 0
输出:333333337(8个3)
解释:期望为 1/3*1+1/3*1+1/3*2=4/3 (正反、反正、正正),又因为333333337*3%1000000007=4,所以答案是333333337。

【分析】取模那里不知道该怎么做。正常求期望如下,利用 E X = ∑ i i p ( x = i ) EX=\sum_{i} ip(x=i) EX=i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值