自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 资源 (1)
  • 收藏
  • 关注

原创 python + swagge : python 读取swagger接口

swagge 接口存在两种调用形式:get方法和post方法。如上图所以根据实际的情况,采用不同的方法。利用requests方法调用get方法:import requests# get调用url= 'http://localhost:5000/test' # rer = requests.get(url)print(rer.text)post方法:url1 = 'http://192.168.6.110:5000/v2.0/query/basic_query'json_para =

2020-12-18 13:57:49 4157 1

原创 正则表达式基础(2)

参考:https://deerchao.cn/tutorials/regex/regex.htm#mission基础:“\b” 是正则表达是的一个特殊代码,代表着字符的开始和结束。"\bhi\b",表示查找hi字符(不包括him,his这样的包含字符)".* " :表示任意数量的不包含换行的字符。(. 表示匹配换行符之外的任何字符,* 表示数量)“\d” : 表示数字exp:0\d\d-\d\d\d\d\d\d\d\d:以0开头,然后是两个数字,然后是一个连字号“-”,最后是8个数字

2020-12-17 16:20:39 219

原创 numpy -- 基础知识 :常见的运算操作

numpy 数据运算操作1.np.aroundnp.around返回四舍五入后的值,可以指定精度格式:around(a, decimals=0, out=None)decimal表示精度,整数表示小数点右边保留几位,负数表示小数点左边保留几位import numpy as npa = [np.random.normal(10) for _ in range(10)]# [8.75979108665653,#9.381251593781995,# 9.26005756259318,

2020-12-11 17:47:01 401

原创 numpy -- 基础方法操作 array和asarray数据类型常用基础方法

numpy 基础知识一、引入包import numpy as np二、基础方法1. Array(数组)rank:数组的维数 a.ndim # 返回维度a = np.array([1,2,3])type(a) #类型a.shape#形状a = a.reshape((-1,n))#其中-1代表的是3,转化形状b = np.zeros((n,m)) #用于创建全为0的数组,其中n,m代表形状c = np.ones((n,m)) # 用于创建全为1的数组d = np.full(

2020-12-11 17:35:42 2152

原创 pandas--基础知识: pandas 数据统计函数

pandas 的数据统计函数1.增长率pct_change序列(Series)、数据框(DataFrame)和Panel(面板)都有pct_change方法来计算增长率(需要先使用fill_method来填充空值)df.pct_change(periods=1, fill_method=‘pad’, limit=None, freq=None, **kwargs),periods表示计算的步长,fill_method表示填充空置的方法,是按照列进行计算的,如果想按照行需要添加axis=1。计算公式:

2020-12-11 17:13:09 1906

原创 python -- 基础知识:内置函数enumerate、zip、isinstance、type、map、map、filter、reduce

python 内置函数1.enumerate() 函数enumerate()函数 用于将一个可遍历的数据对对象(如: 列表、元祖或字符串)组合成一个索引序列,同时列出数据和数据下表,一般用在for循环中enumerate(sequence, [start=0])参数:sequence – 一个序列、迭代器或其他支持迭代对象。start – 下标起始位置。返回值:返回 enumerate(枚举) 对象。2.zip()函数,构造字典参考:https://www.cnblogs.com

2020-12-11 17:06:21 529

原创 python -- unittest 单元测试基础操作

参考:1.https://zhuanlan.zhihu.com/p/51095152 很详细2.https://www.cnblogs.com/feng0815/p/8045850.html常用的断言,即校验结果assertEqual(a, b) # 判断a==bassertNotEqual(a, b) # 判断a!=bassertTrue(x) # bool(x) is TrueassertFalse(x) # bool(x) is Fals

2020-12-11 16:53:26 168

原创 influxdb时间序列数据库 (二):python远程控制influxdb

文章目录前言一、influxdb 是什么?二、使用步骤1.引入库2.初始化3. 基础操作4. 数据查询5. 数据写入总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、influxdb 是什么?influxdb 几个重要的名词介绍database:数据库;measurement:数据库中的表;point:表里面的一行..

2020-12-11 15:43:14 1470

原创 pandas -- 基础操作(六):数据分组及透视表,df.groupby、pd.pivot,、pd.pivot_table、stack(堆叠)、 unstack(不堆叠)

文章目录前言一、数据分组1.1 数据分组格式1.2 基础实例1.3 将分组列设置为index,对index进行整体操作1.4二、透视表1.pd.pivot2.pd.pivot_table3. df.stack\df.unstack总结前言数据分组和数据透视表是常用的数据汇总工具,它可以根据一个或多个制定的维度对数据进行聚合和重组。一、数据分组什么是数据分组:数据分组就是根据一个或多个键(可以是函数、数组或dataframe列名)将数据分为若干组,然后对分组后的数据分别进行汇总计算..

2020-12-09 17:03:30 2091

原创 pandas-- 基础操作(五): json 和 dataFrame 相互转化

文章目录一、pandas是什么?二、json --> dataFrame1. 直接使用pandas1.1 orient='split' : columns,index,data1.2 orient='index',按照index转化1.3 orient='records'1.4 orient='columns'2. json_normalize3. json --> dataFrame1. 传输的文件为一个list列表总结一、pandas是什么?示例:pandas 是基于NumP

2020-12-01 17:01:21 4954 1

原创 python --kakfa(三):kafka模块生产和消费数据

文章目录一、kafka是什么?二、使用步骤1. 安装1.引入库2.消费端:读取数据3.发送端:发送数据总结一、kafka是什么?二、使用步骤1. 安装安装 kafka: pip install kafka-python1.引入库代码如下(示例):from kafka import KafkaConsumerfrom kafka import KafkaProducer2.消费端:读取数据发送和接受消息解析# 客户端接受消息如下ConsumerRecord(topic=

2020-12-01 15:59:43 2259

原创 python --kafka(二): confluent-kafka 模块生产数据消费数据

文章目录前言一、confluent-kafka 是什么?二、使用步骤1.引入库2.消费数据2.1 初始化consumer对象2.2 消费数据偏移量3. 生产数据总结前言kafka是一个开源的流处理平台,一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。一、confluent-kafka 是什么?confluent-kafka 模块 confluent-kafka是Python模块,推荐使用,性能优于kafka-python参考文档:https://docs.c

2020-12-01 15:34:24 7454 9

原创 python-- kafka(一): kafka 安装和查询

kafka 应用数据读取理论生产者和消费者生产者:生产数据消费者:消费生产者产生的数据对应关系:一个任务可以有多个分组,可以对应多个消费者,但消费者数量不能大于生产者分组数量,多余的也是无用的。(多对多的中的一对一关系)特性:kafka只需写入一次,可以支持任意多的应用读取全部数据,如果应用需要读取全量消息,那么请为该应用设置一个消费组,如果消费能力不强可在组内增加消费者数量。安装参考:https://www.cnblogs.com/lnice/p/9668750.html除了安装版本

2020-12-01 10:54:14 767

原创 正则表达式

在字符串操作中正则表达式有着比较高的使用频率,但本人相对比较薄弱很多时候无从下手,特此学习整理,方便回顾!一、 正则表达式符号解释示例说明ABCD.匹配任意字符b.t可以匹配bat / but / b#t / b1t等\w匹配字母/数字/下划线b\wt可以匹配bat / b1t / b_t等 但不能匹配b#t\s匹配空白字符(包括\r、\n、\t等)love\syou可以匹配love you\d匹配数字\d\d可

2020-11-30 17:18:07 87

原创 python -- Apscheduler + 定时任务

python定时任务的实现方法使用apscheduler,参考:https://www.jianshu.com/p/b77d934cc252https://www.jianshu.com/p/ad2c42245906from apscheduler.schedulers.blocking import BlockingScheduler # BlockingScheduler:在进程中运行单个任务, # 调度器是唯一运行的东西 # 1.创建scheduler调度

2020-11-19 09:03:21 916

原创 python -- dict字典基础操作

参考:数据基本操作http://www.runoob.com/python/python-dictionary.htmlhttps://www.cnblogs.com/stuqx/p/7291948.html1. 基本操作word_index = {k: (v+3) for k, v in word_index.items()}在字典开头插入4个数据,所有字典对应的整数位置都+3reverse_word_index = dict([(value, key) for (key, valu

2020-11-16 15:04:01 719

原创 pandas -- 基础操作(四): dataFrame 数据拼接merge、join、concat、append

系列文章目录 基础操作(四): dataFrame 数据拼接merge、join、concat、append文章目录系列文章目录前言dataFrame 数据拼接的方法:1. merge()2. Join()3.append()4. concat()总结前言Pandas.DataFrame操作表连接有三种方式:merge, join, concat,append,下面详细解释这几个方法的使用。dataFrame 数据拼接的方法:1. merge()df.merge(): 可以根据一

2020-11-16 14:53:38 6838

原创 influxdb时间序列数据库 (一):基础操作

基础知识点参考:https://www.cnblogs.com/jackyroc/p/7677508.htmlhttps://www.waitig.com/influxdb-basic-operation.htmlhttps://docs.influxdata.com/influxdb/v1.7/query_language/database_management/#delete-series-with-delete [1.7版本]https://blog.hhui.top/hexblog/20

2020-11-12 16:27:11 1141

原创 pandas -- 基础操作(三) :pandas 层次化索引创建、数据选择

# pandas ---- DataFrame基础操作(三) :panda 层次化索引提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、构建多层索引1. 创建多层索引(创建多维DataFrame)1.1 隐式构建多层索引1.2 pd.MultiIndex 显式构建多层级索引1.3 set_index方法将普通列转成多层级索引2. 多层索引数据提取2.1 选择数据2.2 排序2.3 多层索引的相关操作总结前言pandas 层次化索引, 创建多维数据操作..

2020-11-11 17:28:05 1308

原创 pandas --基础操作(二) :DataFrame 的增删改查、排序操作等基础操作

系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、二维 dataFrame 基础操作1.1 df 数据的增、删、改二、 多维dataFrame 基础操作2.2 创建2.3 基础操作前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,

2020-11-11 15:39:41 926 1

原创 pandas--基础操作(七): datetime、time时间戳操作

python 数据分析之 时间戳操作第一章 Python 数据分析之pandas的使用第二章 Python 数据分析之 时间戳操作第二章 python 数据分析之numpy的使用第三章 python 数据可视化之matplotlib的使用@[TOC](Python 数据分析之 时间戳操作)一、 时间戳的基础操作datetime 数据包time 数据包1.1 数据类型时间序列的数据类型:Datetime Object / String / timestamp / t

2020-11-04 15:01:31 5591 1

原创 pandas --基础操作(一): Serise 、DataFrame 创建和数据选择 基础操作

系列文章目录第一章 Python 数据分析之pandas的使用第二章 python 数据分析之numpy的使用第三章 python 数据可视化之matplotlib的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.对象Series、DataFrame2.1 生成Serise总结前言在数据分析中pandas 有着举足轻重的地位,提供了高性能、易使用的数据结构与数据分析工具。一、pandas

2020-10-26 10:25:23 1415 4

原创 PCA降维

参考:https://blog.csdn.net/u014755493/article/details/69950744 降维:即将高纬度的数据,去除其属性维度的冗余,在保证原有数据分布和信息的情况下有效简化数据。降维后最终的目标是各个属性之间线性无关。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。PCA步骤: 设有m...

2019-03-06 14:56:24 133

原创 wps:如表:自动编号

1.【给图表添加编号】例如:图X–X2.【在文中选择,插入的内容】例如:如X.X所示,光标放在,“如”和“所示”之间。

2019-02-19 09:57:24 1627

原创 tensorflow Object Detection API 训练自己的模型

最近在做图像目标识别,结果不是很理想。将内容整理一下,方便以后查看!一、 tensorflow object detection API 的安装具体步骤:win10+anaconda3+python3.6+tensorflow1.9 1.tensorflow/models下载 ,直接将压缩包解压就可以,需要在系统环境变量中添加路径信息: 我直接在E盘新建了一个tensorflow文件夹...

2018-09-04 15:35:36 2034 4

车载图像去模糊算法研究_杨利祥

车载图像去模糊算法研究论文,主要是图像处理的研究

2016-01-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除