pandas -- 基础操作(四): dataFrame 数据拼接merge、join、concat、append

系列文章目录

基础操作(四): dataFrame 数据拼接merge、join、concat、append



前言

Pandas.DataFrame操作表连接有三种方式:merge, join, concat,append,
下面详细解释这几个方法的使用。


dataFrame 数据拼接的方法:

1. merge()

df.merge(): 可以根据一个或多个键将不同DataFrame中的行连接起来,类似于数据库中的join方法。
参数说明:

merge(left, right, how='inner', on=None, left_on=None, right_on=None,
      left_index=False, right_index=False, sort=True,
      suffixes=('_x', '_y'), copy=True, indicator=False)
      
left,right:需要拼接的两个数据
how:拼接方式,inner(内连接),left(左外连接),right(右外连接),outer(全外连接);默认为inner

on:用于连接列索引名称
left_on:左则DataFrame中用作连接键的列名;这个参数中左右列名不相同,但代表的含义相同时非常有用。

right_on:右则DataFrame中用作 连接键的列名

left_index:使用左则DataFrame中的行索引做为连接键,用到这个参数时,就有点类似于接下来要说的JOIN函数了。

right_index:使用右则DataFrame中的行索引做为连接键

sort:默认为True,将合并的数据进行排序。在大多数情况下设置为False可以提高性能

suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为('_x','_y')

copy:默认为True,总是将数据复制到数据结构中;大多数情况下设置为False可以提高性能

indicator:在 0.17.0中还增加了一个显示合并数据中来源情况;如只来自己于左边(left_only)、两者(both)

特点:

  1. 默认以重叠列名当做链接键
  2. 默认是INNER JOIN。
  3. 可以多键连接,'on’参数后传入多键列表即可
  4. 如果两个对象的列表不同,可以用left_on, right_on指定。
  5. 也可以用行索引当连接键,使用参数left_index=True, right_index=True. 但是这种情况下最好用JOIN
df_2 = pd.DataFrame({
   'key':['a','b','b'], 'data1':range(3)})
df_1 = pd.DataFrame({
   'key':['a','b','c'],'data':range(3)})
df_2
  key  data1
0   a      0
1   b      1
2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值