系列文章目录
基础操作(四): dataFrame 数据拼接merge、join、concat、append
前言
Pandas.DataFrame操作表连接有三种方式:merge, join, concat,append,
下面详细解释这几个方法的使用。
dataFrame 数据拼接的方法:
1. merge()
df.merge(): 可以根据一个或多个键将不同DataFrame中的行连接起来,类似于数据库中的join方法。
参数说明:
merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=True,
suffixes=('_x', '_y'), copy=True, indicator=False)
left,right:需要拼接的两个数据
how:拼接方式,inner(内连接),left(左外连接),right(右外连接),outer(全外连接);默认为inner
on:用于连接列索引名称
left_on:左则DataFrame中用作连接键的列名;这个参数中左右列名不相同,但代表的含义相同时非常有用。
right_on:右则DataFrame中用作 连接键的列名
left_index:使用左则DataFrame中的行索引做为连接键,用到这个参数时,就有点类似于接下来要说的JOIN函数了。
right_index:使用右则DataFrame中的行索引做为连接键
sort:默认为True,将合并的数据进行排序。在大多数情况下设置为False可以提高性能
suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为('_x','_y')
copy:默认为True,总是将数据复制到数据结构中;大多数情况下设置为False可以提高性能
indicator:在 0.17.0中还增加了一个显示合并数据中来源情况;如只来自己于左边(left_only)、两者(both)
特点:
- 默认以重叠列名当做链接键
- 默认是INNER JOIN。
- 可以多键连接,'on’参数后传入多键列表即可
- 如果两个对象的列表不同,可以用left_on, right_on指定。
- 也可以用行索引当连接键,使用参数left_index=True, right_index=True. 但是这种情况下最好用JOIN
df_2 = pd.DataFrame({
'key':['a','b','b'], 'data1':range(3)})
df_1 = pd.DataFrame({
'key':['a','b','c'],'data':range(3)})
df_2
key data1
0 a 0
1 b 1
2