论文Extractive Summarization as Text Matching

论文Extractive Summarization as Text Matching详解

文本匹配式摘要抽取

概要

大多数摘要抽取都是单独抽句子,然后使用模型来观察句子间的相似关系。
我们假设摘要抽取是一个匹配工作,与文档向量最相似的句子就是文本的摘要。
(经过分析句子级和摘要级的抽取分析,我们相信我们的假设是有根据的)

第一章 介绍

在本文中,我们提出了摘要级的框架。将摘要抽取转换为摘要配对工作。主要思想是,一个好的摘要应该与整个文章的语义更加相似(相对于其他摘要)。

学习每一个文本片段的向量,然后使用相似度矩阵去计算匹配分数。

我们使用了孪生BERT去计算文本和候选摘要的相似性。

第二章 相关工作
第三章 句子级还是摘要级?

第四章 摘要匹配
4.1 孪生BERT
权重共享BERT + cos相似度层
使用文档和摘要的[CLS]作为vec,计算cos

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>