论文Extractive Summarization as Text Matching详解
文本匹配式摘要抽取
概要
大多数摘要抽取都是单独抽句子,然后使用模型来观察句子间的相似关系。
我们假设摘要抽取是一个匹配工作,与文档向量最相似的句子就是文本的摘要。
(经过分析句子级和摘要级的抽取分析,我们相信我们的假设是有根据的)
第一章 介绍
在本文中,我们提出了摘要级的框架。将摘要抽取转换为摘要配对工作。主要思想是,一个好的摘要应该与整个文章的语义更加相似(相对于其他摘要)。
学习每一个文本片段的向量,然后使用相似度矩阵去计算匹配分数。
我们使用了孪生BERT去计算文本和候选摘要的相似性。
第二章 相关工作
第三章 句子级还是摘要级?
第四章 摘要匹配
4.1 孪生BERT
权重共享BERT + cos相似度层
使用文档和摘要的[CLS]作为vec,计算cos