Multi-granularity Temporal Question Answering over Knowledge Graphs论文阅读

任务
知识图谱问答。
给定知识图谱,给定相关问题,给出答案。

方法
1.使用一个roberta取cls对问题进行编码E-q,使用一个ner抽取文章中的实体o和s,以及事件t
2.TKG编码向量,实体,关系,时间三个维度,再编码实际的K中知识图谱向量,s,r,o,t(通过实际知识图谱进行学习)
3.问题中抽出时间,展开所有d的TKG表示,并经过位置转换合并为事件向量td,然后经过训练的transformer,取cls为时间表示,
4.得分函数,根据,主体,问题,客体,时间四个向量,选取最合适的属于TKG的实体。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值