基于python+爬虫的网络招聘大数据的应用探索与实现

前言

🌞博主介绍:✌CSDN特邀作者、全栈领域优质创作者、10年IT从业经验、码云/掘金/知乎/B站/华为云/阿里云等平台优质作者、专注于Java、小程序/APP、python、大数据等技术领域和毕业项目实战,以及程序定制化开发、文档编写、答疑辅导等。✌🌞

👇🏻 精彩专栏 推荐订阅👇🏻
2025-2026年最值得选的微信小程序毕业设计选题大全:200个热门选题推荐✅

2025-2026年最值得选的计算机毕业设计选题大全:500个热门选题推荐✅

Java精品实战案例《500套》

微信小程序项目精品案例《200套》
🌞文末获取源码+数据库+文档🌞
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

在这里插入图片描述


系统功能设计

管理员端的功能主要是为系统管理人员设计的,使他们能够全面管理用户信息。这包括对职位信息、用户等模块进行查看、编辑(如修改和删除)、以及添加等操作。通过这些功能,管理员可以清晰地了解并掌控系统的整体运行情况。管理员用例分析图,如图所示。

在这里插入图片描述

用户的功能主要集中在个人账号管理以及信息查询方面。具体而言,用户可以更新和管理自己的账号及密码,同时能够在首页、职位信息、系统公告、个人中心查询并获取相关详情。这些功能旨在为用户提供便捷的个人信息管理途径和丰富的信息查询服务。用户用例分析图,如图所示。
在这里插入图片描述
系统总体功能结构图如下所示:
在这里插入图片描述

详细视频演示

❤文末卡片,滴滴我获取更详细的演示视频

系统实现效果

数据可视化分析看板展示

基于python爬虫技术下网络招聘大数据的应用探索与实现可视化看板,通过数据看板呈现了多项关键信息。工作地点统计模块揭示了不同城市的招聘需求分布,帮助求职者了解就业机会的地理特征。工作类型占比部分则通过图表直观展示了各类职位的需求比例,为职业规划提供参考。职位信息板块详细列出了招聘岗位的具体要求,便于精准匹配。福利分析部分则让求职者清晰了解各公司提供的福利待遇,助力职业选择。薪资分析模块通过数据对比,揭示了不同职位、经验及地区的薪资水平,为薪资谈判提供依据。工作经验统计则反映了市场对不同经验层次人才的需求情况,指导求职者提升自我竞争力。整体而言,该看板为求职者和招聘方提供了全面、深入的数据洞察,促进了人才市场的有效对接。如图所示。
在这里插入图片描述

系统前台实现效果

当访客浏览至系统的网址时,首先映入眼帘的便是首页界面。在这个页面上,访客可以清晰地看到网络招聘大数据的应用探索与实现的导航栏,其中包括系统首页、职位信息、系统公告、个人中心等多个板块。系统首页界面如图所示:
在这里插入图片描述

在注册流程中,用户在Vue前端填写必要信息(如用户名、密码等)并提交。前端将这些信息通过HTTP请求发送到Python后端。后端处理这些信息,检查用户名是否唯一,并将新用户数据存入MySQL数据库。完成后,后端向前端发送注册成功的确认,前端随后通知用户完成注册。这个过程实现了新用户的数据收集、验证和存储。如图所示。
在这里插入图片描述

用户点击以职位信息页面,随后在该页面的查询框中输入标题等关键词进行查询,查询结果展示后,用户可以查看职位的详细信息,包括标题、工作地点、工作类型、工作经验、招聘人数、最低薪资、最高薪资、学历要求等。还可以添加到收藏夹或发表评论;如图所示。
在这里插入图片描述

用户点击系统公告;在系统公告页面的查询栏输入标题等信息,进行查询,然后还可以查看系统公告等信息,还可以进行点赞或者收藏等操作如图所示。
在这里插入图片描述

用户点击个人中心,在个人中心页面填写详细信息,进行更新信息操作,还可以对修改密码、我的收藏等进行详情操作,如图所示。
在这里插入图片描述

系统后台管理实现效果

管理员需通过登录页面,输入其账号和密码等认证信息,以完成登录操作,如图所示。

在这里插入图片描述

管理员成功登录网络招聘大数据的应用探索与实现后,可以访问系统首页、个人中心、职位信息、用户、系统管理等多个功能模块进行细致的操作与管理,如图所示。
在这里插入图片描述

用户功能实现是在Django后端部分,您需要创建一个新的应用,然后在该应用下创建一个模型(models.py)来定义用户信息的数据结构,使用Django的ORM来处理与MySQL数据库的交互,包括用户信息的增删改查等操作。接着,在views.py中编写视图逻辑来处理前端请求,使用Django的URL路由(urls.py)将请求映射到相应的视图函数。对于数据的验证和序列化,可以使用Django的表单或序列化器来实现。在前端Vue.js部分,将创建相应的Vue组件,在这些组件中使用axios或其他HTTP库与Django后端的API进行交互,实现用户信息的展示、添加用户、编辑用户信息和删除用户等功能。状态管理可以通过Vuex来维护,比如在store目录下定义用户模块的状态、突变、动作和获取器。如图所示。
在这里插入图片描述

管理员选择进入职位信息页面后,可以执行对标题、工作地点、工作类型、工作经验、招聘人数、最低薪资、最高薪资、学历要求、公司名称、公司LOGO、公司规模、福利、详情地址、评论数、收藏数的查询、添加职位信息以及删除、爬取数据职位信息以及进行数据清洗等操作,以便对职位信息进行高效管理;如图所示。
在这里插入图片描述

管理员点击系统公告后,会进入相关管理页面。在这个页面上,管理员可以根据系统公告等信息,对系统公告进行查询、添加或删除等操作。这些功能如图如图所示。
在这里插入图片描述

技术栈

本系统框架使用Scrapy.
系统设计支持以下技术栈
前端开发框架:vue.js
数据库: mysql 版本不限
后端语言框架 :python(django)–pycharm/vscode
数据库工具:Navicat/SQLyog等都可以
数据可视化技术:Echart
大数据框架:Hadoop

Scrapy是一个Python编写的强大,灵活的网络爬虫框架和数据提取工具。它使用异步I/O网络库Twisted进行高效的爬取,并将提取到的数据存储到多种格式中。然而,在需要大规模爬取复杂的网站时,单机爬虫速度会受到限制。为了解决这个问题,Scrapy提供了分布式爬虫系统
#协同过滤算法
协同过滤推荐技术一般采用最近邻技术,利用用户的历史喜好信息计算用户之间的距离,然后 利用目标用户的最近邻居用户对商品评价的加权评价值来预测目标用户对特定商品的喜好程度,系统从而根据这一喜好程度来对目标用户进行推荐。基于协同过滤的推荐系统可以说是从用户的角度来进行相应推荐的,而且是自动的即用户获得的推荐是系统从购买模式或浏览行为等隐式获得的,不需要用户努力地找到适合自己兴趣的推荐信息。

关键技术和使用的工具环境等的说明

MySQL是一种关系型数据库管理系统,是大部分程序员接触的第一款关系型数据库。它相对于其他数据库来说相当轻量级,而且更加灵活。在大量的web工程中,经常作为首选的数据库,因为其开源免费的特点被大量的开发人员所使用。而且在大数据背景下,其海量的集群更为web的高并发提供了良好的后盾。

虽然Spark同样是大数据的框架和计算模型,但其实它与hadoop是相辅相成的,而且可以灵活的部署在hadoop之上,共享hadoop的文件系统。并且在数据处理上更为高效和方便、灵活。在数据量越来越庞大的现在,基于内存的spark可以很快的得到处理的结果,甚至现在已经可以支持近实时的数据处理。使得大数据的价值更加凸显。

Hadoop是由Apache基金会开源的分布式的大数据基础系统。
用户可以在不知道分布式基础设施的细节的情况下开发分布式程序。可以利用无数台节点集群进行高速计算和文件的多副本容错存储。

ECharts是百度开源的一个数据可视化框架,是web端的js框架,可以很方便的进行搭建数据可视化前端界面。官网的文档尤其简洁,极易上手开发,使得海量数据处理完成后,可以方便高效快速的进行可视化处理,直接作用于决策。使得数据的价值得到了直观的展示和提升。目前支持多种图形的绘制。

解决的思路

该系统架构主要依托scrapy框架进行架构,后台采用python动态网页语言编写,使用scrapy框架技术从网站上爬取数据,采用java/python/php/nodejs部署系统环境,使用pyhcarm作为系统的开发平台,在数据库设计和管理上使用MySQL。在人机交互的过程中,客户端不直接与数据库交互,而是通过组件与中间层建立连接,再由中间层与数据库交互。通过设计良好的框架可以减轻重新建立解决复杂问题方案的负担和精力,并且它可以被扩展以进行内部的定制化,有强大的用户社区来支持它,所以框架通常能很好的解决一个问题。

爬虫核心代码展示

import scrapy
import pymysql
import pymssql
from ..items import xiangmuItem
import time
import re
import random
import platform
import json
import os
from urllib.parse import urlparse
import requests
import emoji
class xiangmuSpider(scrapy.Spider):
    name = 'xiangmuSpider'
    spiderUrl = 'https://url网址'
    start_urls = spiderUrl.split(";")
    protocol = ''
    hostname = ''

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)


    # 列表解析
    def parse(self, response):
        
        _url = urlparse(self.spiderUrl)
        self.protocol = _url.scheme
        self.hostname = _url.netloc
        plat = platform.system().lower()
        if plat == 'windows_bak':
            pass
        elif plat == 'linux' or plat == 'windows':
            connect = self.db_connect()
            cursor = connect.cursor()
            if self.table_exists(cursor, 'xiangmu') == 1:
                cursor.close()
                connect.close()
                self.temp_data()
                return

        list = response.css('ul.subject-list li.subject-item')
        
        for item in list:

            fields = xiangmuItem()



            fields["laiyuan"] = self.remove_html(item.css('div.pic a.nbg::attr(href)').extract_first())
            if fields["laiyuan"].startswith('//'):
                fields["laiyuan"] = self.protocol + ':' + fields["laiyuan"]
            elif fields["laiyuan"].startswith('/'):
                fields["laiyuan"] = self.protocol + '://' + self.hostname + fields["laiyuan"]
            fields["fengmian"] = self.remove_html(item.css('div.pic a.nbg img::attr(src)').extract_first())
            fields["xiaoshuoming"] = self.remove_html(item.css('div.info h2 a::attr(title)').extract_first())

            detailUrlRule = item.css('div.pic a.nbg::attr(href)').extract_first()
            if self.protocol in detailUrlRule:
                pass
            elif detailUrlRule.startswith('//'):
                detailUrlRule = self.protocol + ':' + detailUrlRule
            else:
                detailUrlRule = self.protocol + '://' + self.hostname + detailUrlRule
                fields["laiyuan"] = detailUrlRule

            yield scrapy.Request(url=detailUrlRule, meta={'fields': fields},  callback=self.detail_parse)


    # 详情解析
    def detail_parse(self, response):
        fields = response.meta['fields']

        try:
            if '(.*?)' in '''div#info span a::text''':
                fields["zuozhe"] = re.findall(r'''div#info span a::text''', response.text, re.S)[0].strip()
            else:
                if 'zuozhe' != 'xiangqing' and 'zuozhe' != 'detail' and 'zuozhe' != 'pinglun' and 'zuozhe' != 'zuofa':
                    fields["zuozhe"] = self.remove_html(response.css('''div#info span a::text''').extract_first())
                else:
                    fields["zuozhe"] = emoji.demojize(response.css('''div#info span a::text''').extract_first())
        except:
            pass
 # 去除多余html标签
    def remove_html(self, html):
        if html == None:
            return ''
        pattern = re.compile(r'<[^>]+>', re.S)
        return pattern.sub('', html).strip()

    # 数据库连接
    def db_connect(self):
        type = self.settings.get('TYPE', 'mysql')
        host = self.settings.get('HOST', 'localhost')
        port = int(self.settings.get('PORT', 3306))
        user = self.settings.get('USER', 'root')
        password = self.settings.get('PASSWORD', '123456')

        try:
            database = self.databaseName
        except:
            database = self.settings.get('DATABASE', '')

        if type == 'mysql':
            connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')
        else:
            connect = pymssql.connect(host=host, user=user, password=password, database=database)

        return connect

    # 断表是否存在
    def table_exists(self, cursor, table_name):
        cursor.execute("show tables;")
        tables = [cursor.fetchall()]
        table_list = re.findall('(\'.*?\')',str(tables))
        table_list = [re.sub("'",'',each) for each in table_list]

        if table_name in table_list:
            return 1
        else:
            return 0

为什么选择我们

海量实战案例

所有实战项目源码均为博主收集和开发,亲测可用,质量保障,大家可以放心使用,当然也可根据需求定制开发。
在这里插入图片描述

自己的公众号(一点毕设)

在这里插入图片描述

源码及文档获取

需要成品或者定做开发,文章下方名片联系我即可~
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
精彩专栏推荐订阅:在下方专栏👇🏻
Java精品实战案例《200套》
微信小程序项目精品实战案例《200套》
Python项目精品实战案例《200套》
大数据项目精品实战案例《200套》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值