深度学习
文章平均质量分 93
(~o▔▽▔)~o o~(▔▽▔o~)
这个作者很懒,什么都没留下…
展开
-
深度学习模型试跑(十五):Real-ESRGAN(VS2019 trt推理部署)
超分辨率修复、重建是采用低分辨率(LR)输入并将其提高到高分辨率的任务,具体原理可以参考paddlegan原理介绍。对于在linux上如何实现trt加速该网络,这里有一篇文章详细记录了过程。原创 2022-09-08 15:26:00 · 4196 阅读 · 12 评论 -
深度学习模型试跑(十四):Bytetrack(vs2019 训练+trt推理部署)
这里记录了多目标追踪模型Bytetrack在win10/vs2019 上,用自定义数据集训模、tensorrt部署的大致过程。原创 2022-09-08 14:26:24 · 15826 阅读 · 11 评论 -
深度学习模型试跑(十三):stylegan3
在深度学习中,训练数据量不足常常会影响分类算法的性能。我从这几年的相关工作经验感受得出,缺乏训练数据并不是例外而是一种规律,这就是为什么很多人会想出各种各样的数据增强方法。吴恩达也说过,scale drives machine learning progress,也是对在深度学习领域数量影像质量这一概念的一种诠释。我们可以使用常规的数据增强手段,比如参考链接中提到的使用的例如旋转翻转,旋转,裁剪,变形,缩放等各类操作原始数据来生成新的训练数据,但这并不能给我们带来真正的新图像。.........原创 2021-12-10 16:29:17 · 21467 阅读 · 89 评论 -
深度学习模型试跑(十):yolov5-deepsort-tensorrt(c++,vs2019版)
目录前言一.模型解读二.模型训练1.数据收集与转换1.1数据收集1.2数据转换2.配置3.开始训练三.YOLOV5模型转换四.deepsort模型转换五.整体模型运行前言最近在做生物图像的相关深度学习任务,感觉所有任务中细胞追踪的应用的难度最高,所以在此记录了一下;在此特别感谢这位大佬博主以及他的博文。码字不易,求‘一键三连’。下面是相关的项目链接地址:yolov5: Yolov5_DeepSort_Pytorch: tensorrtx: deepsort_tensorrt: yolov.原创 2021-09-24 14:50:15 · 4599 阅读 · 23 评论 -
深度学习模型试跑(八):QueryInst
目录前言一.模型解读1.动机2.做法二.模型训练1.数据转换2.配置3.开始训练三.模型推理前言项目地址: 华中科技大学&腾讯官方参数:测试数据集:coco/Cityscapes/YouTube-VIS一.模型解读具体参考1.动机(省略常规操作如先捧对手、尽数它们的优点等…然而)之前得分比较高的例如Cascade Mask R-CNN 、 HTC这类non-query范例如果直接放到以query为基准的检测器下是十分效率底下的。在这篇文章中作者提出了QueryInst,基于q.原创 2021-07-23 16:42:20 · 4064 阅读 · 18 评论 -
深度学习模型试跑(七):SETR(Swin-Transformer-Semantic-Segmentation版)
文章目录一.前言二.环境搭建1.安装cuda和对应的cudnn2.安装vs20193.安装pytorch4.安装mmcv 和 mmsegmentation5.拷贝MMSegmentation三.测试四.训练一.前言源码地址: 论文相关源码本片是基于最近比较红的SwinTransformer下的一个子分支做的,所以这篇主要记录我的搭建流程。os: win10cuda: 11.4GPU: RTX3090(30系列显卡最好用最新的cuda, 不然会在编译mmcv-full的时候报错(例如nvcc原创 2021-07-14 19:01:30 · 2738 阅读 · 11 评论 -
深度学习模型试跑(六):yolov5
一.前言划水的时候写一篇用yolov5在做的项目yolov5官方代码测试参数:(用我自己训练的权重)测试效果:效果和速度都不用说了,而且还有很多大佬写出了ncnn和tensorrt的实现。ncnn效果trt效果暂时无图.总而言之,就是分了太多子版本和s/l/m/x等不同大小的预训练权重(这个也算作是优势),容易搞得人云里雾里;但是整个代码对于不怎么了解深度学习的人来说都是很好使用的。二.运行我下的是最新版 (v3.1)的,win10上和ubuntu18.04上都训练过,以下以wi原创 2020-11-13 16:08:31 · 5787 阅读 · 2 评论 -
Onnx_TensorRT离线安装过程记录
前言这个项目感觉不是很完整,踩了不少坑,特此记录一下.官方代码我的环境:系统 : RHEL8C++ compiler version : 8.2.1Tensorrt版本 : 6.0.5.1(想装7的,公司网络不行太难下载下来了;这个安装比较简单,可以查看其它人写的弄)GPU : P4000搭建步骤~~git clone --recursive https://github.com/onnx/onnx-tensorrt.git~~ #离线便去掉#将原创 2020-09-30 10:03:31 · 699 阅读 · 0 评论 -
开坑Jetson Nano(四):跑通官方jetson-inference
前言之前一直想跑,找了各种各样的方法,反正就是没跑通。个人感觉主要是以下几点原因:jetson-inference下载模型和pytorch时需要fanqiang目前版本对python3.7编译不完全…官方代码参考文章模型下载搭建教程搭建步骤###确认系统上已安装 git 与 cmakesudo apt install -y git cmake###将 git 的代码...原创 2020-03-12 10:29:46 · 935 阅读 · 0 评论 -
开坑Jetson Nano(三):试跑yolov3(tiny版和tiny剪枝版)
目录一.前言二.yolov3的运行1.环境搭建1)更新库2)设置cuda的环境变量路径(这里是以10.0版本的cuda为例;建议把环境变量配置到gedit ~/.bashrc文件末尾)3)下载Darknet 以及Yolov3的权重文件4)配置GPU相关参数5)完成配置2.普通版运行1)进入yolov3(darknet)根目录2)图片检测()3)视屏检测(如果没建swap分区,建议用yolov3-t...原创 2020-03-03 11:13:18 · 5093 阅读 · 6 评论 -
深度学习模型试跑(三):detectron2
一.模型解读今天是大名鼎鼎的detectron2,关于detectron2的解读数不胜数,在此我暂时就不推荐了!官方代码二.试跑效果测试环境:机器 : Dell T5820服务器GPU: Nvidia P4000cuda: 10.1cudnn: 7.5关键库: torch 1.3.0; torchvision 0.4.1; opencv-python 3.4.7pyco...原创 2019-12-23 16:43:42 · 1210 阅读 · 3 评论 -
深度学习模型试跑(二):YOLACT/YOLACT++
目录一.模型解读二.试跑效果yolactyolact++一.模型解读链接中的解读很通俗详细,在此不做赘述;而且YOLACT++在大前天也发布了,作为一个为数不多的在实时检测中可以用mask分割目标的方法,确实非常值得有兴趣的研究人员以及相关学者期待一下.详细解读官方代码YOLACT++解读二.试跑效果yolact测试环境:机器 : 华硕笔记本GPU: Nvidia GTX10...原创 2019-12-19 11:48:49 · 7932 阅读 · 53 评论 -
深度学习模型试跑(一):pysot
目录一.模型解读二.试跑效果一.模型解读作为一个由商汤视觉智能研究团队开发的视觉追踪的模型,该论文主要解决的问题是将深层基准网络ResNet、Inception等网络应用到基于孪生网络的跟踪网络中。在SiameseFC算法之后,尽管已经有很多的基于孪生网络的跟踪算法,但是大家可能会注意到一个问题是,这些网络都使用浅层的类AlexNet做为基准特征提取器。其实在这之前,也有学者们尝试着使用深层的...原创 2019-12-18 11:32:07 · 2695 阅读 · 6 评论 -
开坑Jetson Nano(二):其它相关配套工具的设置
目录一.前言二.相关组件1.更换镜像源2.更改为中文输入法3.文件传输工具三.python代码1.MEMS-INSPECTION.py2.Logining.py3.MSG_BOX.py四.生成exe一.前言上次的项目黄了,不过出于对这种低成本的深度学习视觉平台的热爱,我还是决定继续挖这个坑;另外openmv官宣自己支持tf了https://openmv.io/blogs/news/tensor...原创 2019-12-06 13:44:55 · 908 阅读 · 0 评论 -
开坑Jetson Nano(一):搭建环境
*前言:笔者最近接了个‘私活’,内容大概是用深度学习模块识别产线中不同种类的样品。一开始打算是用openmv 的,但是这东西更新速度较慢,神经网络这一块讨论的人也比较少且案例相对简单,而且就目前看只能限定用caffe等原因就暂时放弃了。我只贴出具体的搭建链接,仅供有资源的研究人士参考:(1)[官方的搭建链接](https://github.com/openmv/openmv/tree/m...原创 2019-09-13 17:47:48 · 1956 阅读 · 2 评论 -
RHEL/centos8.0离线安装n卡驱动,cuda10.1,cudnn7.5,anaconda3,pycharm以及mmdeection和simpledet的搭建
RHEL8做为一个刚推出的版本,再加上我这边大部分时间连不上外网,所以搭建深度学习环境属实繁琐;而且tensorflow是全体阵亡了,所以我特此记录一下我艰辛地搭建流程,若有疏漏的地方望大家在评论中提出来。原创 2019-09-12 16:56:40 · 2504 阅读 · 0 评论