Linux服务器非root用户tensorflow环境搭建

Linux服务器非root用户tensorflow环境搭建

萌新第一次使用实验室的服务器跑程序,为了不打扰到其他用户也不被打扰,需要在自己的目录下搭建自己专属的tensorflow环境,期间踩了不少坑,不过多谢师兄们的指导,现在特地总结下来,其实步骤很简单。
这里注意不需要自己安装Cuda和Cudnn,因为这两个属于tensorflow的依赖,conda会自己解决(来自z师兄),或者也可以理解为之前师兄们已经安装过了,可以公用。

1.安装Anaconda

首先在清华大学开源镜像网址上下载对应自己要用的python版本以及实验室服务器信息的anaconda安装文件,比如我用的是python 3.5,所以下载了Anaconda3-4.2.0-Linux-x86_64.sh文件,然后传到服务器上自己的文件目录下。
链接: [https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/]

在服务器上执行以下命令安装Anaconda3

bash Anaconda3-4.2.0-Linux-x86
### LinuxRoot用户离线安装方法 #### TensorFlow-GPU 2.x 的离线安装 对于希望在公共服务器上使用 root 用户身份来离线安装 TensorFlow-GPU 2.x 版本的情况,推荐采用简便的方法[^1]。此过程涉及预先下载所需的.whl文件到本地计算机,并将其传输至目标机器上的个人目录内完成后续操作。 ```bash pip install --user /path/to/downloaded/tensorflow_gpu‑2.0.0‑cp37‑none‑linux_x86_64.whl ``` #### RabbitMQ 编译安装指南 当面对没有预装必要开发包的情形时,确实需要借助具有管理员权限的账户通过 `yum` 来部署基础组件如 ncurses-devel, openssl-devel 和 gcc 等工具链[^2]。然而,在这些前提条件满足之后,则可以在不拥有超级用户权利的情况下继续执行Erlang以及RabbitMQ本身的源码构建流程: ```bash ./configure --prefix=$HOME/rabbitmq make && make install ``` #### Python 第三方库离线安装实践 针对Python扩展模块而言,如果打算绕过在线资源而采取本地化手段实施setup动作的话,那么遵循官方文档指示将是明智之举[^3]。这里以NumPy为例展示具体做法: ```python # 假设已获取 numpy-x.y.z.tar.gz 文件并解压完毕 cd numpy-x.y.z/ python3 setup.py build -j 4 install --user ``` #### JDK 环境搭建技巧 最后关于Java Development Kit(JDK)的部分,即使不具备全局修改能力也完全能够实现私有化的JDK安置方案[^4]。关键在于合理设置环境变量以便命令行识别新版本的位置: ```bash export JAVA_HOME=$HOME/jdk-xx export PATH=$JAVA_HOME/bin:$PATH export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值