- 博客(38)
- 收藏
- 关注
原创 二叉树与深度优先遍历(二)
数据结构与算法中利用深度优先遍历(DFS)借助二叉树问题。 原文站点:https://senitco.github.io/2018/02/24/data-structure-BiTree-dfs-2/Convert Sorted Array to Binary Search Tree题目描述:Given an array where elements are sorted in as...
2018-03-23 15:46:10 497
原创 C++异常机制
原文站点:https://senitco.github.io/2017/10/15/cplusplus-exception/ C++异常机制用于处理程序中的异常事件,是一种有效处理运行错误的强大且灵活的工具。 C++异常机制概述 C++的异常情况主要分为两种,一种是编译时的语法错误,另一种是运行时异常,例如访问越界,内存不足等。异常机制专门用于处理运行时异常。异常事件在C++中表...
2018-03-21 22:02:33 2001
原创 C++智能指针
原文站点:https://senitco.github.io/2017/10/10/cplusplus-smart-pointer/C++中智能指针(auto_ptr、unique_ptr、shared_ptr)的简单总结。 智能指针的设计思想先看一个简单的例子:void func(std::string & str){ std::string * ps ...
2018-03-20 17:00:13 443
原创 二叉树与深度优先遍历
原文站点:https://senitco.github.io/2018/02/23/data-structure-dfs-bfs-3/数据结构与算法中利用深度优先遍历(DFS)借助二叉树问题。 二叉树结点定义:struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(in...
2018-03-12 22:37:23 548
原创 动态规划(Dynamic Programming)问题集锦(二)
数据结构与算法中动态规划问题的总结归纳。 原文站点:https://senitco.github.io/2018/02/06/data-structure-dynamic-programming-2/Maximum Subarray题目描述:Find the contiguous subarray within an array (containing at least one ...
2018-03-09 16:44:48 458
原创 深度优先遍历与广度优先遍历(二)
原文站点:https://senitco.github.io/2018/02/20/data-structure-dfs-bfs-2/数据结构与算法中深度优先遍历(DFS)与广度优先遍历(BFS)问题总结归纳。 Word Ladder题目描述:LeetCode Given two words (beginWord and endWord), and a dictionary’s w...
2018-03-04 12:27:14 297
原创 深度优先遍历与广度优先遍历(一)
原文站点:https://senitco.github.io/2018/02/18/data-structure-dfs-bfs-1/数据结构与算法中深度优先遍历(DFS)与广度优先遍历(BFS)问题总结归纳。 Clone Graph题目描述:LeetCode Clone an undirected graph. Each node in the graph contains a ...
2018-03-04 12:25:42 510
原创 动态规划(Dynamic Programming)问题集锦
原文站点:https://senitco.github.io/2018/02/04/data-structure-dynamic-programming-1/数据结构与算法中动态规划问题的总结归纳。 Word Break题目描述:LeetCode Given a non-empty string s and a dictionary wordDict containing a li...
2018-02-27 19:21:58 637
原创 二叉树问题集锦
原文站点:https://senitco.github.io/2018/02/03/data-structure-binary-tree/数据结构中经典二叉树问题的总结归纳。 二叉树结点定义:struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val
2018-02-03 16:34:10 375
原创 链表问题集锦(二)
原文站点:https://senitco.github.io/2018/02/02/data-structure-linkedlist-2/数据结构中经典链表问题总结归纳,接上一篇链表问题集锦(一) 单链表逆转题目描述:给定一个单链表,将其逆转。LeetCode 分析:迭代法求解,借助三个指针start、head、next,start指向逆转后(已重排)的第一个结点,head指向未
2018-02-02 15:50:02 321
原创 链表问题集锦(一)
原文站点:https://senitco.github.io/2018/02/01/data-structure-linkedlist/将数据结构中一些经典的链表问题做一个总结归纳。 单链表结点定义:struct ListNode { int val; ListNode *next; ListNode(int x) : val(x), next(NULL) {
2018-02-02 14:26:50 518
原创 Deep Learning -- Normalization
原文站点:https://senitco.github.io/2017/09/12/deep-learning-normalization/ Normalization可理解为归一化、标准化或者规范化,广泛应用于诸多领域。整体来讲,Normalization扮演着对数据分布重新调整的角色。在图像处理领域,不同形式的归一化可以改变图像的灰度、对比度信息;在机器学习和神经网络中,Normalizati
2017-12-29 15:39:59 865
原创 Deep Learning -- Regularization
原文站点:https://senitco.github.io/2017/09/10/deep-learning-regularization/ 在训练神经网络时,为了缓解网络规模较大、训练数据较少而可能导致的过拟合(Overfitting)问题,通常会采取正则化(Regularization)方法,以提高模型的泛化能力。 Overview 过拟合具体表现如下图所示,在迭代训练的过程中,模型复杂
2017-12-28 11:35:08 541
原创 Deep Learning -- Dropout
原文站点:https://senitco.github.io/2017/09/08/deep-learning-dropout/ 训练神经网络模型时(Nerual Network),如果网络规模较大,训练样本较少,为了防止模型过拟合,通常会采用Regularization(正则化,e.g. L2-norm、Dropout)。Dropout的基本思想是在模型训练时,让某些神经元以一定的概率不工作。
2017-12-27 22:07:56 493
原创 Deep Learning -- Activation Function
原文站点:https://senitco.github.io/2017/09/05/deep-learning-activation-function/ 神经网络的激活函数(activation function)通过引入非线性因素,使得网络可以逼近任何非线性函数,提高网络模型的表达能力,更好地解决复杂问题。 Overview 激活函数通常具有以下性质: - 非线性:使用非线性激活函数的多层
2017-12-26 12:14:24 640
原创 Faster R-CNN论文及源码解读
原文站点:https://senitco.github.io/2017/09/02/faster-rcnn/ R-CNN是目标检测领域中十分经典的方法,相比于传统的手工特征,R-CNN将卷积神经网络引入,用于提取深度特征,后接一个分类器判决搜索区域是否包含目标及其置信度,取得了较为准确的检测结果。Fast R-CNN和Faster R-CNN是R-CNN的升级版本,在准确率和实时性方面都得到了较大
2017-12-25 11:25:08 17238 1
原创 Linux服务器下安装TensorFlow
原文站点:https://senitco.github.io/2017/07/20/linux-install-tensorflow/ 简单介绍在Linux服务器的个人目录下安装TensorFlow。TensorFlow的安装方式有多种,基于Pip的安装、基于Docker的安装、基于VirtualEnv的安装、基于Anaconda的安装,以及从源码编译安装,这些在官网均有介绍,这里简单记录下基于A
2017-12-24 20:27:20 10420
原创 图像局部特征描述总结
原文站点:https://senitco.github.io/2017/07/18/image-local-feature-summary/ 局部图像特征描述是计算机视觉的一个基本研究问题,在寻找图像中的对应点以及物体特征描述中有着重要的作用。它是许多方法的基础,因此也是目前视觉研究中的一个热点,每年在视觉领域的顶级会议ICCV/CVPR/ECCV上都有高质量的特征描述论文发表。同时它也有着广泛的
2017-12-23 19:35:00 2237
原创 图像特征描述子之FREAK
原文站点:https://senitco.github.io/2017/07/15/image-feature-freak/ FREAK算法来源2012年CVPR上的一篇文章FREAK: Fast Retina Keypoint,与ORB、BRISK算法类似,FREAK也是一种基于二进制编码的图像特征描述子,计算较快,对噪声鲁棒,具有尺度不变性和旋转不变性。此外,该算法还有一个突出特点就是受到人眼
2017-12-23 15:04:57 5001
原创 图像特征描述子之BRISK
原文站点:https://senitco.github.io/2017/07/12/image-feature-brisk/ BRISK(Binary Robust Invariant Scalable Keypoints)是BRIEF算法的一种改进,也是一种基于二进制编码的特征描述子,而且对噪声鲁棒,具有尺度不变性和旋转不变性。 特征点检测 BRISK主要利用FAST算法进行特征点检测,为了
2017-12-22 21:02:19 2985
原创 图像特征描述子之ORB
原文站点:https://senitco.github.io/2017/07/09/image-feature-orb/ ORB(Oriented FAST and Rotated BRIEF)算法是对FAST特征点检测和BRIEF特征描述子的一种结合,在原有的基础上做了改进与优化,使得ORB特征具备多种局部不变性,并为实时计算提供了可能。 特征点检测 ORB首先利用FAST算法检测特征点,然
2017-12-22 12:36:26 3996 2
原创 图像特征描述子之BRIEF
原文站点:https://senitco.github.io/2017/07/05/image-feature-brief/ BRIEF(Binary Robust Independent Elementary Features)是一种对已检测到的特征点进行表示和描述的特征描述方法,和传统的利用图像局部邻域的灰度直方图或梯度直方图提取特征的方式不同,BRIEF是一种二进制编码的特征描述子,既降低了
2017-12-21 19:44:52 5384
原创 图像特征之SUSAN角点检测
原文站点:https://senitco.github.io/2017/07/01/image-feature-susan/ SUSAN(Small univalue segment assimilating nucleus)是一种基于灰度图像以及窗口模板的特征点获取方法,适用于图像中边缘和角点的检测,对噪声鲁棒,而且具有简单、有效、计算速度快等特点。 原理概述 SUSAN算子采用一种近似圆形
2017-12-21 11:59:34 3215
原创 图像特征之FAST角点检测
原文站点:https://senitco.github.io/2017/06/30/image-feature-fast/ 前面已经介绍多种图像特征点(角点、斑点、极值点)的检测算法,包括Harris、LoG、HoG以及SIFT、SURF等,这些方法大多涉及图像局部邻域的梯度计算和统计,相比较而言,FAST(Features From Accelerated Segment Test)在进行角点检
2017-12-20 20:04:21 1435
原创 图像特征描述子之PCA-SIFT与GLOH
原文站点:https://senitco.github.io/2017/06/28/image-feature-PCA_SIFT-GLOH/ SIFT和SURF是两种应用较为广泛的图像特征描述子,SURF可以看做是SIFT特征的加速版本。在SIFT的基础上,又陆续诞生了其他的变体:PCA-SIFT和GLOH(Gradient Location-Orientation Histogram)。 PC
2017-12-20 12:29:26 3063
原创 图像特征之SURF特征匹配
原文站点:https://senitco.github.io/2017/06/27/image-feature-surf/ 加速鲁棒特征(Speed Up Robust Feature, SURF)和SIFT特征类似,同样是一个用于检测、描述、匹配图像局部特征点的特征描述子。SIFT是被广泛应用的特征点提取算法,但其实时性较差,如果不借助于硬件的加速和专用图形处理器(GPUs)的配合,很难达到实时
2017-12-19 18:43:07 4190 1
原创 图像特征之SIFT特征匹配
原文站点:https://senitco.github.io/2017/06/24/image-feature-sift/ 尺度不变特征变换(Scale-invariant feature transform, SIFT)是计算机视觉中一种检测、描述和匹配图像局部特征点的方法,通过在不同的尺度空间中检测极值点或特征点(Conrner Point, Interest Point),提取出其位置、尺度
2017-12-19 14:28:38 2455
原创 图像特征之LoG算子与DoG算子
原文站点:https://senitco.github.io/2017/06/20/image-feature-LoG-DoG/ LoG(Laplacian of Gaussian)算子和DoG(Difference of Gaussian)算子是图像处理中实现极值点检测(Blob Detection)的两种方法。通过利用高斯函数卷积操作进行尺度变换,可以在不同的尺度空间检测到关键点(Key Po
2017-12-18 12:34:27 9093 2
原创 图像特征之Harris角点检测
原文站点:https://senitco.github.io/2017/06/18/image-feature-harris/ 角点检测(Corner Detection)也称为特征点检测,是图像处理和计算机视觉中用来获取图像局部特征点的一类方法,广泛应用于运动检测、图像匹配、视频跟踪、三维建模以及目标识别等领域中。 局部特征 不同于HOG、LBP、Haar等基于区域(Region)的图像局部
2017-12-16 14:55:10 2537
原创 图像特征提取之Haar特征
原文站点:https://senitco.github.io/2017/06/15/image-feature-haar/ Haar特征是一种用于目标检测或识别的图像特征描述子,Haar特征通常和AdaBoost分类器组合使用,而且由于Haar特征提取的实时性以及AdaBoost分类的准确率,使其成为人脸检测以及识别领域较为经典的算法。 多种Haar-like特征 在Haar-like特征提出
2017-12-15 12:33:16 9208 1
原创 图像特征提取之LBP特征
原文站点:https://senitco.github.io/2017/06/12/image-feature-lbp/ 局部二值模式(Local Binary Patter, LBP)是一种用来描述图像局部纹理特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点,它将图像中的各个像素与其邻域像素值进行比较,将结果保存为二进制数,并将得到的二进制比特串作为中心像素的编码值,也就是LBP特征值
2017-12-14 21:50:18 5171
原创 图像特征提取之HOG特征
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。 算法思想 HOG特征的核心思想是在一幅图像中,局部目标的表象和形状(appearance and s
2017-12-14 13:01:42 5370 1
原创 C/C++处理十六进制数和字符串
原文站点:https://senitco.github.io/2017/06/07/string-processing/ C/C++处理十六进制数和字符串小结,包括十六进制数组和字符串的相互转换,二进制字符串和十六进制数组的转换,不定长字符串的读取等。 十六进制数组和字符串的相互转换例如 { 0x23, 0x3A, 0x46, 0x4C, 0x52 } <=> “233A464C52”/****
2017-12-13 18:07:38 27842 1
原创 字符编码:Unicode、UTF-8、GBK
原文站点:https://senitco.github.io/2017/06/06/character-encoding/ 简单总结各种字符集(Ascii、Unicode、GB2312)、编码(UTF8、GBK)以及不同编码之间的转换。 字符集(Charcater Set)与字符编码(Encoding)字符集(Charcater Set 或 Charset):是一个系统支持的所有抽象字符的集合,
2017-12-13 11:58:53 3243
原创 简述云平台和相关软件工具
本文简单论述了公有云平台和私有云平台的关系,它们之间的异同点,并列举在公有云资源上搭建私有云的软件工具,说明它们采用的技术、以及应用的领域等方面存在的异同。 公有云平台和私有云平台的关系以及异同点 云计算是近年来由集群、网格、分布式和效用计算发展而来的全新计算模式,将IT资源、数据、应用等作为一种服务,通过网络提供给用户。在云计算模式下,用户不必构建和组织这些资源,而是可以直接按需付费使用云计算
2017-12-12 19:05:04 2535
原创 数据挖掘中的度量方法
在数据挖掘中,无论是对数据进行分类、聚类还是异常检测、关联性分析,都建立在数据之间相似性或相异性的度量基础上。通常使用距离作为数据之间相似性或相异性的度量方法,常用的度量方法有欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离、马氏距离、Jaccard系数、相关系数、信息熵。 欧式距离 nn维空间中两个样本点xx和yy之间的欧几里得距离定义如下: d(x,y)=Σnk=
2017-12-02 22:20:13 2074
原创 机器学习算法之数据降维
原文站点:https://senitco.github.io/2017/05/10/data-dimensionality-reduction/ 数据降维是通过某种数学变换将原始高维属性空间,转变为一个低维子空间,对数据进行降维,可以有效地去除样本中冗余的属性,减少数据容量,缓解维数灾难,加快学习速度。数据降维的常用方法有主成分分析(PCA)、多维缩放(MDS)、线性判别分析(LDA)、等度量映射
2017-12-02 09:36:12 4664
原创 Chinese Text Detection and Recognition
原文站点:https://senitco.github.io/2017/03/03/text-detection-recognition/ The task of Chinese text detection is to localize the regions in a 2D image which contain Chinese characters. The task of Chinese
2017-12-01 15:07:31 2332
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人