hdu 1384 差分约束

Description

You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.

Write a program that:

> reads the number of intervals, their endpoints and integers c1, ..., cn from the standard input,

> computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i = 1, 2, ..., n,

> writes the answer to the standard output

Input

The first line of the input contains an integer n (1 <= n <= 50 000) - the number of intervals. The following n lines describe the intervals. The i+1-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and 1 <= ci <= bi - ai + 1.

Process to the end of file.

Output

The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i = 1, 2, ..., n.

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6


从最开始学习差分约束之后就懵逼了   我还以为是什么很高级的东西       没想到还是           转化

转化转化       这是作图论最重要的步骤     因为转化同时也包括了  建图


简而言之   差分约束就是将  a-b<=c  的约束条件转化成最短路问题    这是我看的差分约束详解    简直一看就懂  再次感谢博主  http://www.cnblogs.com/void/archive/2011/08/26/2153928.html

关于这道题的话   题意是  给你很多线段   让你在这些线段中必须挑出几个点  加入一个集合    问你最后在这个中   元素最少有几个

这里的话    我们这样转化    输入  a b c   那么定义一个  函数 f(x)    表示  1— x  之间挑了多少个数

于是乎   得下列关系式     f(b)-f(a-1)>=c     对于所有区间内的点   a    有   0<=f(a)-f(a-1)<=1

习惯性写法    把0给避免掉的化   每次输入都  +1就好了


ac code

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
#include <cstdlib>

using namespace std;
const int maxn=50005;
const int inf=0x3f3f3f3f;
int n,idx;
int head[maxn],d[maxn];
bool vis[maxn];

struct node
{
    int v,w;
    int nxt;
}edge[maxn];

void add(int u,int v,int w)
{
    edge[idx].v=v;
    edge[idx].w=w;
    edge[idx].nxt=head[u];
    head[u]=idx++;
}

void spfa(int mi)
{
    queue<int> que;
    que.push(mi);
    vis[mi]=true;
    d[mi]=0;
    while(!que.empty())
    {
        int u=que.front();
        que.pop();
        vis[u]=false;
        for(int i=head[u];i!=-1;i=edge[i].nxt)
        {
            int v=edge[i].v;
            if(d[u]+edge[i].w>d[v])
            {
                d[v]=d[u]+edge[i].w;
                if(!vis[v])
                {
                    vis[v]=true;
                    que.push(v);
                }
            }
        }
    }
}

int main()
{
    int u,v,w;
    while(scanf("%d",&n)!=EOF)
    {
        memset(head,-1,sizeof head);
        idx=0;
        int mi=inf,mx=-inf;
        for(int i=0;i<n;i++)
        {
            scanf("%d %d %d",&u,&v,&w);
            add(u,v+1,w);
            mx=max(mx,v+1);
            mi=min(mi,u);
        }
        for(int i=mi;i<=mx;i++)
        {
            add(i+1,i,-1);
            add(i,i+1,0);
            d[i]=-inf;
            vis[i]=false;
        }
        spfa(mi);
        printf("%d\n",d[mx]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值