例1
给出一个m*n矩阵,矩阵中的元素是0或1
称位置(x,y)与其上下左右四个位置是相邻的
如果矩阵中有若干个1是相邻的,那么称这些1构成了一个块
请求出给定矩阵中“块”的个数
矩阵如下:
0 1 1 1 0 0 1
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 1 1 0
1 1 1 0 1 0 0
1 1 1 1 0 0 0
例如上面的6*7矩阵中,有四个块
对这个问题,基本的求解思路是,枚举每个位置的元素,如果是0,跳过
如果是1,使用BFS查询相邻的四个位置,判读是否为1,如果为1,继续BFS
为了防止重复访问,我们可以设置一个bool数组来进行记录
我们可以设两个增量数组来表示四个方向
int x[]={0,0,1,-1}
int y[]={1,-1,0,0}
竖着看起来,就是(0,1)、(0,-1)、(1,0)、(-1,0)
即往下,往上,往右,往左四个方向
那么我们可以用for循环枚举四个方向
for(int i=0;i<4;i++)
{
newX=nowX+x[i];
newY=nowY+y[i];
}
#include<iostream>
#include<cstdio>
#include<string>
#include<queue>
#include<stack>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=100;
struct node{
int x,y;
}Node;
int n,m;
int matrix[maxn][maxn];
bool inq[maxn][maxn]={false};
int X[4]={0,0,1,-1};
int Y[4]={1,-1,0,0};
bool judge(int x,int y);
void BFS(int x,int y);
int main()
{
cin>>n>>m;
for(int x=0;x<n;x++)
for(int y=0;y<m;y++)
cin>>matrix[x][y];
int ans=0;
for(int x=0;x<n;x++)
for(int y=0;y<m;y++)
{
if(matrix[x][y]==1&&inq[x][y]==false)
{
ans++;//块数+1
BFS(x,y);//访问整个块,把该块的所有1的inq全部置为true
}
}
cout<<ans<<endl;
return 0;
}
bool judge(int x,int y)
{
if(x>=n||x<0||y>=m||y<0)//坐标越界
return false;
if(matrix[x][y]==0||inq[x][y]==true)//不是1或者已经判断过
return false;
return true;
}
void BFS(int x,int y)
{
queue<node> q;
Node.x=x;
Node.y=y;
q.push(Node);
while(!q.empty())
{
node top=q.front();
q.pop();
for(int i=0;i<4;i++)//循环4次,得到4个相邻位置
{
int newX=top.x+X[i];
int newY=top.y+Y[i];
if(judge(newX,newY))//如果新位置合法,需要访问
{
Node.x=newX;
Node.y=newY;
q.push(Node);//把他入队
inq[newX][newY]=true;//设置为已访问
}
}
}
}