吴恩达深度学习总结(11)

本文总结了吴恩达深度学习课程中关于LeNet-5、AlexNet、VGG-16和Residual Networks的内容。讨论了残差网络为何有助于解决深度学习中的梯度消失和退化问题,以及迁移学习和数据增强在提升模型性能中的应用。
摘要由CSDN通过智能技术生成

经典网络的学习

LeNet-5

LeNet
上图是LeNet-5的结构(来自吴恩达的课件,下面所有图片均来自于吴恩达课件),该网络只有卷积层,pooling层和全连接层,pooling层使用的是均值池化,非线性激活使用的是sigmoid/tanh,而不是现在最常用的ReLU。
原文地址:http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

AlexNet

AlexNet
该网络与LeNet比较:

  1. 结构相似但是网络更深
  2. 使用ReLU作为激活函数
  3. 使用GPU进行并行计算
  4. Local Response Normalization(LRN局部相应归一化层):选取一个位置,对该位置上一个通道的值进行归一化(作用很小,现在的网络很少使用)
    原文地址:https://www.nvidia.cn/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf

VGG-16

VGG-16
结构更为规整(卷积层后边带pooling层),而且随着网络加深,输入长宽的减少与信道数目的上升是有规律的
原文地址:https://arxiv.org/pdf/1409.1556.pdf http://arxiv.org/abs/1409.1556.pdf
(PS:吴恩达推荐阅读顺序为:先读Alex,再读VGG,最后LeNet)

Residual Network(残差网络)

出现的原因是由于训练非常深的网络时发现十分难训练,且经常出现梯度消失和梯度爆炸。

残差网络基本结构
残差网络也叫做short cut或skip connection。
残差网络的计算流程为:
z [ l + 1 ] = W [ l + 1 ] a [ l ] + b [ l + 1 ] → a [ l + 1 ] = g ( z [ l + 1 ] ) → z^{[l+1]} = W^{[l+1]}a^{[l]} + b^{[l+1]} \to a^{[l+1]} = g(z^{[l+1]}) \to z[l+1]=W[l+1]a[l]+b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值