- 博客(252)
- 资源 (14)
- 收藏
- 关注
原创 系统学习CUDA
CUDA简介CUDA是NVIDIA的GPGPU模型,它使用C语言为基础,可以直接以大多数人熟悉的C语言,写出在显示芯片上执行的程序,而不需要去学习特定的显示芯片的指令或是特殊的结构。在CUDA的架构下,一个程序分为两个部份:host端和device端。Host端是指在CPU上执行的部份,而device端则是在显示芯片上执行的部份。Device端的程序又称为"kernel"。通常host。
2024-12-10 08:18:38 742
原创 《Scientific Reports》2024最新投稿经验
Scientific Reports有一个两年的影响因子:4.380(2021),是世界上第六大被引用最多的期刊,在2020年被引用超过540,000次(Clarivate Analytics,2021)。
2024-12-06 21:50:42 1179
原创 【无标题】
但由于您在 Windows 系统上运行代码,可以采取以下措施来绕过问题:通过创建一个简单的fncl.py文件并放置在Python安装目录的Lib目录下,可以避免因缺少该模块而引发的错误。新建fcntl.py文件(用记事本也行),输入以下代码并保存至Python安装目录的Lib目录下。是一个特定于 Unix 的模块,在 Windows 上无法使用。模块在您的 Windows 系统上不可用。
2024-12-02 18:17:30 405
原创 复旦大学附属中山医院院士团队论文遭遇质疑
该论文研究了蛋白酪氨酸磷酸酶受体S(PTPRS)在肝细胞癌中的作用,特别是其如何通过调控表皮生长因子受体(EGFR)诱导的上皮间质转化(EMT)来抑制肿瘤转移。然而,评论者Mycosphaerella arachidis指出,论文中的图3和图4中显示的蛋白印迹(Western blot)图像存在意外的相似性,这些图像本应来自不同的细胞类型和实验条件。图3和图4:这些蛋白印迹(blot)之间存在意外的相似性,而它们本应来源于不同的细胞类型和实验条件。杂志的肝细胞癌研究论文因图像数据的相似性问题受到质疑。
2024-09-26 00:28:51 442
原创 医学双语术语|糖尿病
糖尿病是一种慢性病,当胰腺产生不了足够的胰岛素或者人体无法有效地利用所产生的胰岛素时,就会出现糖尿病。高血糖症或血糖升高,是糖尿病不加控制的一种通常结果,随着时间的推移会对人体的许多系统带来严重损害,特别是神经和血管。Ⅰ型糖尿病(过去称为胰岛素依赖型,青少年或儿童期发病型糖尿病)的特征是缺乏胰岛素分泌能力,需要每天注射胰岛素。9.excessive excretion of urine [ɪk'sesɪv ɪk'skriʃ(ə)n əv 'jʊrɪn] 尿液分泌过多。适当控制血糖,尤其是Ⅰ型糖尿病患者。
2024-09-26 00:21:11 1118
原创 Nature | 浙江大学张龙:AARS1/2调控cGAS乳酸化并抑制固有免疫
2024年4月,苏州大学周芳芳团队通过CRISPRi筛选,发现并验证了AARS1是细胞内乳酸感应器和乳酸转移酶,AARS1直接与乳酸结合并催化乳酸-AMP的形成,将其转移到赖氨酸上调控整体赖氨酸乳酸化。在人巨细胞病毒(HCMV)感染的患者中,血清中L-乳酸水平正常的患者,其血清中的cGAMP和IFNβ(干扰素β)浓度显著高于高乳酸血症(H-Lac)或乳酸酸中毒(LA)的患者。自然界中存在乳酸的两种旋光异构体L-乳酸和D-乳酸,可分别介导蛋白发生L-乳酸化修饰、D-乳酸化修饰。
2024-09-26 00:15:51 1176
原创 Biomaterials近期论文及下载链接
近期论文1近期论文2近期论文3近期论文4近期论文5近期论文6https://authors.elsevier.com/a/1jimvWWN0%7EIuZ公众号投稿请联系:
2024-09-26 00:14:00 180
原创 基因共定位 xQTLbiolinks 第4部分
此小插图中提供了一些可视化示例,包括示例数据、代码和图形。组织 eQTL 、 sQTL 、 基因表达的可视化。4. 使用 xQTLbiolinks 进行可视化。
2024-09-25 23:36:39 405
原创 基因共定位 xQTLbiolinks 第3部分
All we need to prepare include three parts:我们需要准备的包括三个部分:Prostate cancer is one of the most common cancers in men. Prostate cancer pathogenesis involves both heritable and environmental factors. The molecular events involved in the development or prog
2024-09-25 23:34:57 766
原创 【基因共定位 xQTLbiolinks 第2部分】
共定位位点应显示一种一般模式,其中高 LD 中的 SNP 将与共定位基因的表达水平表现出很强的相关性,而低 LD 中 SNP 的 eQTL 关联将减弱。eQTL 的这种模式在不同的组织/细胞类型中有所不同,其强度表明变体的调节作用的强度。在此示例中,加载了 16538 (rows) x 5 (cols) 的 data.table 对象。此外,为了减少性状基因的数量,从而减少运行时间,我们将 eGenes 和性状基因的重叠作为功能。性状基因是位于哨兵 SNP 的 1Mb (默认,可以使用参数。
2024-09-25 23:32:23 865
原创 【基因共定位 xQTLbiolinks 第1部分】
下载指定基因或组织的 sGenes (sQTL Genes) 的详细信息。下载指定基因或组织的 eGenes (eQTL Genes) 详细信息。eGene/sGene download eGene/sGene 下载。xQTL expression download xQTL 表达下载。Gene expression download 基因表达下载。下载 sQTL 对的内含子的标准化内含子切除比。1. xQTLbiolinks:查询和下载。下载组织中指定基因的所有样品的中位表达。
2024-09-25 23:28:19 1120
原创 【无标题】
报错:方案1:install.packages() 加上INSTALL_opts = '--no-lock':方案1会安装升级成功,但是00LOCK-rlang文件夹还在——说明下次更新此包时仍可能出同样的error。方案2:use unlink() to delete 00LOCK-rlang删除00LOCK-rlang文件夹,后续照常安装即可。如果unlink失败可尝试重启R。install.package()的说明文件里是这么解释的:也就是说,出于防止其他安装过程干扰和暂存旧版本的目的,R
2024-09-25 16:06:13 729
原创 【R 4.4.0 Can‘t Install hyprcoloc】
HyPrColoc 是一种高效的确定性贝叶斯分裂聚类算法,使用 GWAS 摘要统计数据,可以同时检测大量特征的共定位。
2024-09-25 15:57:35 336
原创 无法将ggplot图保存为PDF文件怎么办
即serif代表Times New Roman字体,sans代表Arial字体,mono代表Courier New字体。这种映射关系在基础绘图系统和系统中均可使用。然后你就会看到大量的字体,被从内置区域,搬运到R 目录下然后就是在保存之前,加载字体ggsaveggplot2提供了ggsave函数来保存图形。:在某些情况下,图形设备可能没有正确打开或关闭。CairoPDF()是一个替代方案,它更好地处理了字体渲染和跨平台问题。为确保CairoPDF正常工作,请确保正确使用单位并且关闭图形设备 (
2024-09-17 10:50:02 648
原创 count格式的数据转换(count to FPKM,count to TPM) 【GEO数据库】
在正式分析之前,对于数据的处理是至关重要的,这种重要性是体现在很多方面,其中有一点是要求分析者采用正确的数据类型。对于,原始数据,比如差异分析、热图、箱线图、PCA分析、生存分析、模型构建,聚类分析和相关性分析等。对于,在上述的常见分析中是需要。首先要去获取基因长度文件,因为后续需要用这个数据去矫正基因长度。网址:https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files。
2024-08-27 08:56:50 3128
原创 bat入门到精通
首先我们需要知道脚本是什么:脚本是一种特殊文件,借助这种文件我们可以快速实现一些配置设置或快速启动某些部件那么脚本具有什么优势:脚本的语言相对而言比较简单易学,可以快速掌握脚本可以使用任何文本文件编辑工具创建和修改,简单便捷脚本通过一次书写多次执行的方式来简化多次代码的书写,加快速度脚本可以提前设置执行方式,使我们在部署或其他方面简化操作,封装内部快速使用那么市面上常见的脚本都有哪些:python:目前比较常用的语言之一,这里推荐简单学习一下。
2024-08-20 20:41:16 1106
原创 【错误于split.default(seq_len(nrow(mat)), split): 组的长度为零但数据的长度大于零】
无厘头的报错:circos.heatmap(mat1, col = col_fun1)报错如下。
2024-08-01 21:06:41 986 1
原创 成功解决报错:cell2location导入报错 cannot import name ‘parse_use_gpu_arg
Cell2location采用贝叶斯层次框架。首先使用外部单细胞RNA测序数据作为参考数据,估计细胞类型特异性基因表达特征。然后,通过负二项分布(negative binomial regression)对观察到的空间表达计数矩阵建模,其中均值参数取决于参考细胞类型的特征,过度分散参数使用指数-伽马复合先验建模,旨在使大多数基因具有低过度分散。基因特异性技术灵敏度和基因-位置特异性的加性偏移被包括在均值参数的一部分,每个都使用单独的层次伽马先验进行建模。
2024-07-15 21:26:18 1245
原创 生存分析和机器学习
在生存分析中,可以使用基于集成学习的方法,如Bagging、Boosting等,对多个模型进行集成,提高生存时间的预测准确性。鉴于目前生存分析的解读性文章太多,本公众号主打数据分析的实践、实战、复盘以及高分文章的复盘,本文只罗列核心的几个概念,欲只更多,大家可自行检索其他。在数据分析过程中,小编发现大家最大的问题是无法将自己的变量在不同的分析目的中顺延下去,因此,基于此生存分析合集,你将主要学会如何具体应用深度学习模型进行生存分析,并且迅速掌握用python及R语言实现用自己的数据进行生存分析,发表文章。
2024-05-06 06:05:51 1022 1
原创 【基于深度学习进行多变量纵向数据和生存数据的动态预测】
01【研究背景】阿尔茨海默病(AD)是一种进行性神经退行性疾病,在疾病的早期阶段准确预测AD的进展对于治疗至关重要。AD患者通常在疾病的整个过程中进行随访,从而重复测量多个纵向变量,将多个纵向变量纳入生存模型将会改善AD预测。许多现有的预测方法只使用最后可用的观测,忽略了累积纵向信息,具有局限性;适用于纵向和生存数据的联合模型(JM)被用于评估各种纵向生物标志物预测AD的能力,当考虑多个纵向结果,JM涉及大量的随机效应,计算困难。02【当前进展和关键科学问题】目前已经提出
2024-05-06 06:03:52 1721
原创 神经网络模型--DEEPSURV
其中::特指神经网络的输出,表示给定协变量 的风险的对数估计。:是在时间 之前仍然存活的所有个体的风险的对数总和。:表示发生事件(例如死亡)的个体数。:这是正则化项,用于防止模型过拟合。
2024-05-06 06:00:01 1536 1
原创 Linux环境下的7种文件
对于Linux环境下的编程学习,小编已经发布过关于Linux内核组成的相关推文了,本次决定发一篇关于Linux环境下文件类型的推文,希望对读者的学习有所帮助。对于文件类型及信息的查看方式,小编知道的方式有三种,如图所示,如果读者还知道其他方式,可以到后台给小编留言哦!作用:一种用于进程间通信的特殊文件,也称为命名管道FIFO。作用:用于存放目录项,是文件系统管理的重要文件类型。6、字符设备文件---->c。4、套接字文件---->s。7、块设备文件---->b。1、普通文件---->-
2024-05-06 05:45:59 322
原创 Linux- 如何快速移动代码块?
相信程序员在编程(撸代码)的时候,都会有对代码块进行调整的时候,但是如何快速的移动代码块以实现高效率呢?对于代码块的快速移动,除了需要掌握通过Ctrl + C 和 Ctrl + V 实现代码跨文件移动或同一文件不同位置移动之外,还需要掌握小编今天给刚入门的小白提供的方法,实现代码的原地移动及代码块的整齐排列。好了,本次推文的内容就到这里,如果读者对于本次推文内容、文字排本等相关内容有什么好的建议,可以到本公众号后台进行留言哦!4、在食指持续按住的情况下,根据自己的需要用中指点击Tab键,达到效果。
2024-05-06 05:44:33 308
原创 Linux内核的五大子系统
虚拟文件系统(VFS)是物理文件系统与服务之间的一个接口层,它对Linux的每个文件系统的所有细节进行抽象,使得不同的文件系统在Linux核心以及系统中运行的其他进程看来,都是相同的。进程是正在运行的程序实体,并且包括这个运行的程序中占据的所有系统资源,比如说CPU(寄存器),IO,内存,网络资源等。内核,是一个操作系统的核心。是基于硬件的第一层软件扩充,提供操作系统的最基本的功能,是操作系统工作的基础,它负责管理系统的进程、内存、内核体系结构,设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。
2024-05-06 05:42:43 1238 1
原创 linux查看、添加、删除环境变量--实测好用
环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数。环境变量本质就是一张表,保存在内存当中。该表在用户登录系统的时候,给用户生成的特定的环境变量表。环境变量的主要用途:身份认证动态库查找保存工作路径(pwd)特定路径查找保存特定变量值。
2024-05-06 05:40:38 3292
原创 vscode连接远程服务器【亲测可用】
VS Code几乎是所有的程序员必备的工具之一,据说全球一般的开发者都使用过VS Code这款工具。今天为大家介绍一下 VS Code 实现远程办公的方法。
2024-05-05 10:45:24 1846
原创 【无标题】
为了衡量学习者在新的数据上的表现,我们通常通过将数据分成训练集和测试集来模拟unseen数据的场景。通常,我们可以选择此类超参数的值。然而,在大多数情况下,我们希望调整学习器,以便它可以自己搜索“好的”模型配置。num.trees 默认为 500,mtry 为 floor(sqrt(ncol(data) - 1)),在我们的例子中是 4。在我们的例子中,我们的目标显然是对二元因子变量 credit_risk 进行建模或预测。通常,在机器学习中,我们不使用可用的完整数据,而是使用一个子集,即所谓的训练数据。
2024-04-25 13:52:46 771
原创 mrls3 超参数调参
机器学习的是模型的一阶(直接)参数,是训练模型时用梯度下降法寻优的参数,比如正则化回归模型的回归系数;而是模型的二阶参数,需要事先设定为某值,才能开始训练一阶模型参数,比如正则化回归模型的惩罚参数、KNN的邻居数等。超参数会对所训练模型的性能产生重大影响,所以不能是随便或凭经验随便指定,而是需要设定很多种备选配置,从中选出让模型性能最优的超参数配置,这就是。。首先要知道学习器包含哪些超参数:id列就是超参数的名字,default列是默认值。
2024-04-25 13:27:27 1070
原创 R语言数据可视化-Upset图
我要给你安利一个R语言绘图的超实用干货——集合可视化的神器:UpSetR包!🌟它能够优雅地处理集合间的交集、并集,让数据的对比和关系一目了然。🎨告别那些让人眼花缭乱的传统图表,用UpSetR包让你的数据图形简洁又美观,还能轻松展示出更多的信息。✨🚀 特点速览:1️⃣ 直观展示集合关系2️⃣ 动态交互,探索数据更深入3️⃣ 自定义设置,满足你的个性化需求4️⃣ 一键导出,分享你的发现🔬 数据分析,不再只是数字游戏,让我们一起用UpSetR包,把数据变成故事,讲述属于你的见解。📚关于不同集合之间的交集
2024-04-22 22:57:22 3863
原创 R语言-基于现有临床预测模型预测性能评估(predRupdate)
在结果中给出校准曲线的斜率0.7403,截距0.7479,AUC为0.5816及95%置信区间(0.5703-0.5928),Brier Score为0.1246。当我们用模型集成时,元模型必须是同一类型的模型,比如logistic或survival模型,这与常用的模型集成有所不同。在新数据上验证现有的预测模型,以估算模型的预测性能,即外部验证;将现有模型的系数及截距构建为数据框。将多个现有模型集成为一个新的模型。构建逻辑回归模型。模型验证。
2024-04-22 22:26:12 682
原创 【基于机器学习算法的随机生存森林-R语言生存分析】
随机生存森林是随机森林处理生存数据的扩展方法。它涵盖了随机森林的各种模型,包括:连续变量的回归,多元回归,分位数回归,分类,生存分析等典型应用。我们着重介绍其中的生存分析部分的内容。在生存分析中,常用Cox回归进行多因素分析。本文介绍一种基于随机森林算法的生存分析方法-随机生存森林(randomForestRSC)。4.2 绘制Brier score 随时间变化的曲线。7.2 karno变量对生存的影响。2.2 打印模型信息。绘制前5个样本的生存曲线。优化后的最佳节点数为10。
2024-04-22 22:17:10 1168
原创 R语言-新颖的可解释性机器学习(vivid)
vivid构建了一种新的矩阵类型的布局,用于显示所有单变量和双变量的部分依赖图。这些新的可视化技术与模型无关,可以应用于回归和分类监督的学习设置,即使在变量数量很大且交互结构复杂的情况下,也能增强解释性。函数生成了一个广义偏依赖对图(GPDP),该图在对角线上包含了单变量偏依赖(带有ICE曲线),在上三角区包含了双变量偏依赖图,而在下三角区则是原始变量值的散点图。函数生成一个热图,用于显示变量重要性和交互作用,其中对角线上显示重要性值,非对角线上显示交互作用值。参数设置要显示的ICE曲线的数量。
2024-04-22 22:14:20 714
原创 R进阶绘图--散点图+统计分布图/ggpubr包/aplot包/gridExtra包
示例数据ToothGrowth数据集结构如图所示,这是一项评估维生素C对豚鼠牙齿生长的影响的研究数据,len是牙齿长度;supp是两种给药方式,一种是橙汁OJ,另一种是抗坏血酸VC;dose是三种给药水平。对于该数据集我们后续均采用非参数检验方法。iris数据集是R语言自带的鸢尾花数据集,有5个变量,我们今天用到的3个变量Petal.Length、Petal.Width、Species分别是花瓣长度、花瓣宽度和品种。示例数据。
2024-04-21 13:56:05 978
原创 R实用绘图--火山图 / ggplot2
火山图由散点图和阈值线构成,它通常用于展现统计检验的显著性(如:p value)和变化幅度(如:差异倍数),能够帮助我们快速直观地识别出那些变化幅度较大且具有统计学意义的数据点(如:差异基因)。常应用于生物学中的转录组、基因组等研究中。
2024-04-21 13:53:17 2780
原创 实用绘图--弦图 / circlize包
今天带领大家绘制的是弦图,主要用到的是circlize包中的chordDiagram()函数。和弦图与桑基图比较类似,可以展示类别型数据之间的关系和流向。连接两个数据点之间的弧线可以通过方向、颜色、线型、线宽和与圆的接触面积来展示不同纬度的关系信息。弦图的优点在于它能把复杂的数据关系可视化,数据关系呈现的更加直观,缺点是当连接数过多的时候,弦图会比较混乱。
2024-04-21 13:51:14 317
原创 R实用绘图--桑基图 / 冲击图 / networkD3
今天带领大家绘制的是桑基图(Sankey diagram),用于可视化流动、转移或转换过程中的能量、资源或数量。桑基图主要由两个元素组成:节点和流线。节点代表不同的实体,而流线则表示这些实体之间的流动。桑基图的特点是它能够清晰地展示复杂的流动关系,使观察者能够迅速理解系统中各个部分之间的相互作用和能量或资源的流动路径。这种图表常常用于能源管理、物流优化、资源分配等领域。桑基图的名称来源于一名爱尔兰船长,最初他采用这种图展示了蒸汽的能源效率,所以该图以他的名字命名为桑基图。
2024-04-21 13:50:29 1049
前列腺癌GWAS研究(GCST006085)29892016-GCST006085-EFO-0001663-build37.f
2024-09-25
py -m pip install nvidia-cudnn-cu12
2024-09-24
01-MorphableModel.mat
2023-06-05
mxnet==1.7.0.post2
2022-06-07
torchvision-0.11.1+cu113-cp38-cp38-win_amd64
2022-06-02
org.Hs.eg.db_3.5.0.tar.gz下载一直报错
2022-05-26
Chromoblastomycosis
2022-05-10
SEER数据库简介 Documentation of SEER*Stat Variables
2022-05-09
pycocotools_windows-2.0.0.2-cp38-cp38-win_amd64.whl
2022-05-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人