自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 资源 (1)
  • 收藏
  • 关注

原创 【机器学习】AI大项目机器解析文件YAML语法配置

字符串:字符串可以不加引号,但如果字符串中包含特殊字符(如冒号、空格、引号等),则需要用引号(单引号或双引号)括起来。缩进:YAML 使用缩进来表示层级关系,不允许使用制表符(Tab)进行缩进,只能使用空格。对象/映射:键值对可以组成对象或映射,键和值之间用冒号(:)和空格分隔,对象或映射中的项以缩进表示层级。键值对:YAML 中的数据以键值对(key: value)的形式组织。列表:列表中的项用破折号(-)开始,且同一列表项保持相同的缩进级别。数字:YAML 支持整数和浮点数,且无需特殊格式。

2024-07-13 11:53:20 316

原创 采样利器【stable diffusion】DDIMSampler PLMSSampler DPMSolverSampler

DDIMSampler、PLMSSampler、DPMSolverSampler在Stable Diffusion及其相关领域中是不同类型的采样器,它们在图像生成过程中起着关键作用,影响着生成图像的多样性、质量和速度。

2024-07-13 00:35:59 594

原创 解决方案【stable diffusion】内存不足 Process finished with exit code -1073741819 (0xC0000005)

这本身不影响模型的运行,但表明您可能需要更新代码或库以避免未来的兼容性问题。这可能是模型输入的一部分,比如在某些生成模型(如扩散模型)中的潜在空间表示。这表明模型在构建时使用了这种特定类型的注意力块,这通常是为了处理序列数据或图像数据中的长距离依赖关系。GPU 资源问题:如果您的模型在 GPU 上运行,并且 GPU 内存不足或驱动程序不兼容,也可能导致此类错误。检查内存和 GPU 资源:确保您的系统有足够的内存和 GPU 资源来运行模型。软件错误:代码中的某些部分可能存在错误,导致不正确的内存访问。

2024-07-10 11:53:07 441

原创 【图像生成与增强技术】GFPGAN ESRGAN BSRGAN RealESRGAN

综上所述,GFPGAN、ESRGAN、BSRGAN和RealESRGAN都是基于深度学习的图像生成与增强技术,它们在各自的领域内具有广泛的应用前景和重要的应用价值。科学与医学图像:如显微镜图像或医学扫描图像,使用RealESRGAN可以增强图像细节,以帮助诊断和研究。高效与性能:BSRGAN在保持高效率的同时,具有优良的性能,能够生成细节丰富、视觉质量高的图像。图像超分辨率:ESRGAN的主要功能是将低分辨率图像转化为高分辨率图像,同时保持图像质量。

2024-07-09 19:10:39 385

原创 【stable diffusion】latent channels 通道为什么是4个通道

在机器学习和深度学习的上下文中,特别是在与生成模型(如GANs、VAEs等)或任何涉及潜在空间(latent space)的模型相关的场景中,latent channels(潜在通道)的数量是一个超参数,它定义了潜在空间或潜在向量的维度。在图像处理中,颜色通道通常指的是图像中存储颜色信息的不同维度(例如,红色、绿色和蓝色),但在潜在空间中,“通道”或“维度”的概念更为抽象,它们用于捕捉数据在潜在表示中的不同方面或特征。计算效率:较少的潜在通道通常意味着更低的计算成本,包括更快的训练速度和更少的内存使用。

2024-07-02 21:35:47 381

原创 【模型训练】Sampler 类随机样本和shuffle=Ture 打乱样本 有什么区别

您提供的 randomsample 类是一个自定义的 Sampler,它实现了从给定的标签数据中随机抽取样本的功能,并且支持批量抽取。【2】使用场景:如果你需要更复杂的样本抽取逻辑(例如,确保每个batch中特定类别的样本数量),randomsample 会是一个更好的选择。【1】随机性:在每个epoch开始时,randomsample 会重新计算每个batch的索引,确保每个batch都是从整个数据集中随机选择的。【2】批量大小:它允许你指定一个批量大小,每个batch都会尽量按照这个大小来抽取样本。

2024-06-29 20:13:25 246

原创 【模型训练】使用向量化操作或并行处理来提高模型训练性能

在预测阶段,如果你有一个非常大的数据集并且希望加快处理速度,你可以将数据划分为多个批次(batches),并使用多个进程或线程来并行处理这些批次。假设你已经有了一个批量的预测结果ctc_out_chars(它可能是一个二维张量,其中每行是一个解码后的序列)和一个对应的目标张量targets(同样是一个二维张量)。但这里我们讨论的是预测阶段的并行处理,而不是训练。当使用向量化操作或并行处理来提高性能时,我们主要关注的是减少循环中的逐元素操作,并利用现代计算设备的并行计算能力。

2024-06-26 22:37:03 278

原创 【模型训练】模型陷入局部最优解的表现和解决办法

【2】验证集/测试集性能不佳:在机器学习任务中,如果模型在训练集上表现良好但在验证集或测试集上性能不佳,这可能意味着模型过度拟合了训练数据并陷入了局部最优解。敏感于初始条件:如果算法的性能对初始条件(如初始参数设置)非常敏感,那么它可能容易陷入不同的局部最优解,这通常意味着算法没有全局搜索能力。收敛速度变慢:随着迭代次数的增加,算法的收敛速度可能会变慢,这可能是由于算法接近或停留在局部最优解附近导致的。【3】迭代过程中的振荡:在某些情况下,算法可能会在多个局部最优解之间振荡,而不是收敛到单一的解。

2024-06-26 14:21:05 1387

原创 【OCR-光学字符识别】为什么batch较小时可能会表现出更高的精度

综上所述,选择较小的批次对于提高OCR模型的精度是有益的。通常可以通过尝试不同的批次大小并监测模型在验证集上的性能来确定最佳的批次大小。因为每个批次都需要一定的计算资源来处理,较小的批次可以确保这些资源得到更充分的利用,从而减少计算资源的浪费。而较小的批次则可以在有限的内存资源下支持更复杂的模型和更大的数据量。虽然较大的批次可能会使模型在训练初期更快地收敛,但较小的批次在训练后期往往能够提供更稳定的性能提升。这有助于模型学习更加通用的特征,从而提高其在未见过的数据上的泛化能力。样本用了1024个…

2024-06-25 23:37:03 336

原创 pytorch版和tensorflow版全连接注意力和多头注意力【机器学习】模型搭建

全连接注意力和多头注意力都是注意力机制的一种,用于在神经网络中引入注意力机制来实现信息交互和权重计算。在全连接注意力中,通过计算查询(query)和键(key)的内积得到注意力权重,再将权重与值(value)相乘得到最终的输出下面我将分别解释全连接注意力和多头注意力,并提供用PyTorch实现的示例代码。多头注意力是在全连接注意力的基础上引入了多个头(即多个并行的注意力机制)进行处理,以增加模型的表示能力和捕捉不同方面的信息。不同的注意力机制适用于不同的情况,可以根据具体需求选择合适的注意力机制来应用。

2024-06-22 18:47:09 874

原创 【模型训练】如何提高 Beam Search(波束搜索)评分或概率

每一行Beam:后面的列表似乎是一个预测的字符序列(可能是单个字符的索引),而紧跟其后的数字是该序列的评分或概率(通常越低越好,因为通常这些评分是负对数概率或类似的度量)。ctc_out_char和real不匹配!这个错误消息意味着波束搜索生成的最佳字符序列(或其中一个波束中的序列)与实际的(或期望的)字符序列real不匹配。5.检查评估代码:确保评估代码(即用于比较ctc_out_char和real的代码)是正确的,并且考虑了所有必要的细节(如大小写、标点符号等)。确保这些步骤已正确实现。

2024-06-21 23:50:42 224

原创 如何提高解码器产生有效的标签序列 增强模型学习输出精度

通过结合以上建议,你可以逐步提高解码器产生有效的标签序列的能力,并增强模型学习输出的精度。根据任务需求和数据特点,选择合适的模型架构,例如对于序列生成任务,可以考虑使用RNN、LSTM或GRU等。跟踪最新的研究成果和技术进展,将新的技术和方法应用到模型中,以进一步提高模型的性能。更多的训练数据可以帮助模型更好地学习到数据的特征和规律,从而提高解码器的输出精度。使用合适的评估指标,如准确率、召回率、F1分数等,来评估模型的输出精度。随着时间的推移,收集更多的数据并重新训练模型,以利用新的知识和模式。

2024-06-21 22:26:04 148

原创 【模型训练】如何提高切片返回值 提高模型输出精度

综上所述,提高切片操作切出来的返回值成功率需要从多个方面入手,包括选择合适的切片方法、进行数据预处理、优化切片策略、使用高质量的工具和库、进行错误处理和异常检测、定期维护和保养以及持续学习和改进等。在进行切片操作之前,对数据进行适当的预处理可以提高切片的质量。对于电镜制样超薄切片,适当的样品处理(如固定、脱水、渗透等)同样可以减少样品在切片过程中的变形和损坏,提高切片的成功率。对于电镜制样超薄切片机的切片操作,确保选择了合适的切片厚度、切片速度和切片刀角度等参数,这些都会影响切片的成功率。

2024-06-21 21:20:19 194

原创 (CRNN)模型可以正常输出特征和特征长度,但是ctc_decoder解码列表为空[]

最后,如果可能的话,尝试使用不同的 CTC 解码器或库来解码你的模型输出,看看问题是否仍然存在。在解码器之后,可能还有其他的后处理步骤(如去除重复的空白标签、删除长度小于某个阈值的字符序列等)。如果你的输入数据(如音频或文本)与模型训练时使用的数据在长度或结构上有所不同,这可能会导致解码器无法正确对齐输入和输出。如果你的模型是一个神经网络,确保输出层(softmax 或其他分类层)正确配置,并且能够产生合理的输出。如果示例数据可以产生正确的输出,那么问题可能出在你的实际输入数据或预处理步骤上。

2024-06-20 19:01:45 222

原创 如何优化模型model在概率分布log_softmax文本序列值和标签labels值能正确匹配成功输出

模型model在概率分布log_softmax文本序列值和标签labels值能正确匹配成功输出直接使用 == 运算符可能不够灵活,因为在实际应用中,我们可能希望允许一定程度的差异(例如拼写错误、标点符号差异、大小写差异等)。例如,你可以先使用编辑距离来过滤掉差异很大的序列,然后再使用TF-IDF或BERT等方法来进一步评估序列之间的相似性。如果你的目标是处理字符级别的差异(如拼写错误),你可以考虑使用基于字符级别的深度学习模型(如基于LSTM或Transformer的序列到序列模型)来预测或纠正文本。

2024-06-19 23:37:17 275

原创 模型输出和log_softmax输出为什么是一样的

当你沿着dim=2(即最后一个维度,代表类别数)应用log_softmax时,pro_log的形状仍然会是[batch_size, sequence_length, num_classes],因为log_softmax只是在数值上改变了Tensor中的值,而没有改变Tensor的结构或形状。所以,当你打印logit.size()和pro_log.size()时,你会看到两个输出值是一样的,因为它们的形状确实没有改变。print(f’logit概率分布值:’, pro_log[0, 0, :])

2024-06-19 22:38:27 217

原创 【机器学习】为什么用正则化技术防止模型过拟合

综上所述,正则化技术通过简化模型复杂度、减少参数数量、使用L1和L2正则化、使模型更平滑以及控制模型复杂度等方法来提高防止过拟合的效果。这些措施有助于降低模型在训练集上的性能与在测试集上的性能之间的差距,从而提高模型的泛化能力。1.简化模型复杂度:正则化通过在模型的损失函数中添加一些惩罚项,使得模型在训练过程中不仅关注于最小化经验风险(即数据误差),还关注于最小化结构风险(即模型的复杂度)。减少参数数量:正则化可以约束模型参数,使其不会过大,进而减少模型中的参数数量。

2024-06-19 17:29:33 360

原创 【机器学习】模型训练loss损失值正常下降,但是acc准确率精度却为零0

如果模型在训练时使用了不同的标签集,或者预测时标签的处理方式与训练时不一致,那么精度可能会受到影响。2.类别不平衡:如果数据集中某些类别的样本数量远远多于其他类别,而模型又没有得到适当的处理(例如使用权重调整、重采样等),那么模型可能会偏向于预测数量最多的类别,导致其他类别的精度很低甚至为0。例如,在分类任务中,你可能需要确保你的代码正确地计算了精度(即正确分类的样本数除以总样本数)。1.模型性能差:模型可能还没有学习到任何有用的特征或模式,导致它的预测几乎总是错误的。

2024-06-19 15:31:46 1181

原创 初始化隐藏状态【h0】和细胞状态【c0】到RNN,LSTM,GRU --OCR(光学字符识别)

这些张量的形状应该是(num_layers * num_directions, batch_size, hidden_size),其中num_layers是LSTM层数,num_directions是LSTM的方向数(对于双向LSTM为2,对于单向LSTM为1),batch_size是批量中的样本数,hidden_size是隐藏层的大小。h0和c0被初始化,可以根据需要使用其他值或策略来初始化它们。img = Image.open(‘00000.jpg’).convert(‘L’) #本地图片一张。

2024-06-19 00:05:46 676

原创 在OCR(光学字符识别)加入ctc_decode 输出每个时间步可能存在的字符

在使用这些函数时,通常需要提供模型的输出概率、序列长度等信息,并设置适当的解码参数(如束大小、空白标记等)。束搜索(Beam Search):在每个时间步上,保留概率最高的几个候选序列(即“束”),并在后续时间步上扩展这些序列。总结来说,ctc_decode 是将 CTC 模型输出转换为最终序列的过程,涉及解码策略的选择、解码函数的调用以及后处理步骤。此外,还有一些开源的 CTC 解码库,如 fast-ctc-decode(如参考文章2所述),这些库通常提供了更高效的解码实现和更灵活的配置选项。

2024-06-18 17:25:03 378

原创 OCR(光学字符识别)任务中 字符准确率、单词准确

字符准确率是指OCR系统正确识别出的字符数占总字符数的比例,而单词准确率则是指OCR系统正确识别出的单词数占总单词数的比例。在OCR(光学字符识别)任务中,记录训练准确次数是一个关键步骤,它有助于我们评估模型的性能和优化训练过程。当模型在验证集上的准确率达到或超过设定的阈值时,记录当前的迭代次数或epoch数。根据记录的准确率数据和训练准确次数,分析模型在训练过程中可能存在的问题,如过拟合、欠拟合、梯度消失等。可以将训练准确次数作为模型训练的一个关键指标,用于比较不同模型或不同训练策略的性能。

2024-06-17 23:54:03 317

原创 深度学习-运用transforms方法 对图片增强

transforms方法在图像增强中起到了至关重要的作用,特别是在深度学习的数据预处理阶段。以下是关于transforms方法如何对图片进行增强的详细解释:数据增强的目的数据增强是一种常用的数据预处理技术,通过对训练集进行各种变换和扩增操作,增加训练数据的多样性和丰富性,从而提高模型的泛化能力。其目的是模拟真实世界中的各种场景和变化,帮助模型学习到更多不同的特征和模式,提高模型对于不同样本的适应能力,减少过拟合的风险。

2024-06-17 16:30:03 762

原创 减小模型损失率 需要哪些充足准备

请注意,不同的任务和数据集可能需要不同的策略和参数设置,因此在实际应用中需要进行适当的调整和优化。使用网格搜索(grid search)或随机搜索(random search)等策略来调整模型的超参数,如学习率、批量大小、正则化强度等。例如,对于分类任务,可以使用交叉熵损失;使用合适的初始化策略,如He初始化、Xavier初始化等,来初始化模型的权重和偏置。选择一个合适的优化器,如SGD、Adam、RMSprop等,来更新模型的权重。根据需要,可以调整优化器的参数,如学习率、动量等,以找到最佳的训练效果。

2024-06-17 15:49:07 312

原创 python 实现鼠标滚轮自动下滑加载网页数据

1.没有selenium库 安装 pip install selenium。2.下载webdriver 放在python 根目录里面。【python 实现鼠标滚轮自动下滑加载网页数据】好用代码持续更新中…

2023-09-22 13:40:01 499

原创 遍历年月日

获取当前年月的最大日期。

2023-09-22 00:12:32 134

原创 python百家姓转拼音代码

python百家姓转拼音代码。

2023-09-21 21:46:16 396

c4d_bridge.rar

c4d_bridge.rar

2020-08-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除