【OCR-光学字符识别】为什么batch较小时可能会表现出更高的精度

128batch 测试…第1轮第8次输入样本才学习到1个…样本用了1024个…
在这里插入图片描述在这里插入图片描述

32batch 第1轮第20次输入样本就学习到1个…样本才用了320个…
在这里插入图片描述

OCR(Optical Character Recognition,光学字符识别)模型在批次(batch size)较小时可能会表现出更高的精度,这主要可以归结为以下几个原因:

1.探索数据空间的能力:
当批次较小时,模型在每次迭代中处理的数据量较少。这意味着模型在训练过程中能够更频繁地更新权重,从而有机会更细致地探索数据空间。这有助于模型找到更适合全局最优解的权重配置。
相比之下,较大的批次可能使模型在权重更新时“跳过”某些局部最优解,从而可能影响最终的精度。
泛化能力:
较小的批次通常意味着模型在训练过程中会接触到更多的数据组合。这有助于模型学习更加通用的特征,从而提高其在未见过的数据上的泛化能力。
较大的批次可能会使模型过度拟合训练数据,导致在测试集或实际应用中的性能下降。
2.计算资源的有效利用:
在GPU等计算资源有限的情况下,较小的批次可以更有效地利用这些资源。因为每个批次都需要一定的计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值