Python openpyxl 操作Excel 为指定Cells、区域设置边框线、颜色

1.0 单独设置某个单元格的边框

复制即可使用,仅需要修改传入的Excel名(路径)、Sheet名、要修改的单元格索引

# Author: CDamogu
# Date: 2022/05/12
# Des: Set Border to Excel Singel Cells, openpyxl

import openpyxl
from openpyxl.styles import *

outputXlName = 'excelTest.xlsx'
inputShtName = 'Sheet1'

wb = openpyxl.load_workbook(outputXlName)
ws = wb[inputShtName]

#设置边框{'medium' 中粗 'thin'  细  'thick'  粗  'dashed'  虚线  'dotted'  点线}
def format_border_cell(ws,row_index,col_index):
    ws.cell(row_index,col_index).border = Border(top = Side(border_style='thick', color='FF000000'),    
                                right = Side(border_style='thick', color='FF000000'), 
                                bottom = Side(border_style='thick', color='FF000000'),
                                left = Side(border_style='thick', color='FF000000'))

# 调用函数,给('A1')单元格设置边框
format_border_cell(ws,1,1)

wb.save(outputXlName)

2.0 给某个区域设置边框样式(表格边框内外边框不同处理)

复制即可使用,仅需要修改传入的Excel名(路径)、Sheet名、要修改的行列索引

# Author: CDamogu
# Date: 2022/05/12
# Des: Set Border to Excel Singel Cells, openpyxl

import openpyxl
from openpyxl.styles import *

outputXlName = 'excelTest.xlsx'
inputShtName = 'Sheet1'

wb = openpyxl.load_workbook(outputXlName)
ws = wb[inputShtName]


# ボーダー設定  边界设置    Border settings
def format_border(ws, start_row, end_row, start_col, end_col):
    # 内部ボーダー  内部边界  Internal border
    for row in tuple(ws[start_row:end_row]):
        for cell in row[start_col-1:end_col]:
            cell.border = set_border('medium', 'medium', 'medium', 'medium')
    # 左側ボーダー  左边界  Left border
    for cell in [row[start_col-1] for row in ws[start_row:end_row]]:
        cell.border = set_border(cell.border.top.style, cell.border.bottom.style, 'medium', cell.border.right.style)
    # 右側ボーダー  右边界  Right border
    for cell in [row[end_col-1] for row in ws[start_row:end_row]]:
        cell.border = set_border(cell.border.top.style, cell.border.bottom.style, cell.border.left.style, 'medium')
    # 上側ボーダー  上边界  Upper border
    for cell in ws[start_row][start_col-1:end_col]:
        cell.border = set_border('medium', cell.border.bottom.style, cell.border.left.style, cell.border.right.style)
    # 下側ボーダー  下边界  Lower border
    for cell in ws[end_row][start_col-1:end_col]:
        cell.border = set_border(cell.border.top.style, 'medium', cell.border.left.style, cell.border.right.style)
    return ws

# 定義ボーダー様式  定义的边界风格  Defined border style
def set_border(t_border, b_border, l_border, r_border, t_color='000000', b_color='000000', l_color='000000', r_color='000000'):
    border = Border(top=Side(border_style=t_border, color=t_color),
                    bottom=Side(border_style=b_border, color=b_color),
                    left=Side(border_style=l_border, color=l_color),
                    right=Side(border_style=r_border, color=r_color))
    return border

# Param: 表格Sheet名,起始行,终止行,起始列,终止列
format_border(ws,1,81,3,14)

wb.save(outputXlName)

3.0 例子效果如下

在这里插入图片描述

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CDamogu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值