PD分离与EP分离技术

一、Prefill与Decode的底层原理剖析

1.1 Prefill阶段的数学本质

(以Transformer架构为例)

计算密集型的核心原因:
# 自注意力计算伪代码
Q = X @ W_Q  # [batch, seq_len, d_model] → [batch, seq_len, d_k]
K = X @ W_K  # O(n^2)复杂度开始显现
V = X @ W_V

attn = (Q @ K.transpose(-2, -1)) / sqrt(d_k)  # [batch, seq_len, seq_len]
attn = softmax(attn)
output = attn @ V  # 立方级计算复杂度

深入解析:
  • 注意力机制的平方复杂度:
    Prefill阶段的核心瓶颈在于自注意力计算。对于长度为N的序列,需要计算每个token与其他所有token之间的关联,这导致了O(N²)的计算复杂度。这意味着,当输入序列长度增加一倍时,计算量将增加四倍。
  • KV Cache的构建:
    Prefill阶段还需要构建KV Cache,用于存储每个token的key和value向量。这些向量将在Decode阶段被重复使用,以加速注意力计算。KV Cache会占用大量的显存。
# 以Llama-7B模型为例(hidden_size=4096)
kv_cache_per_layer = 2 * batch * seq_len * num_heads * head_dim
# 当batch=1, seq=2048, layers=32时:
总缓存量 = 32 * 2 * 2048 * 4096 * 1 = 536MB

1.2 Decode阶段的访存瓶颈

典型访存模式分析:
for token in output_sequence:  # 自回归循环
    # 读取当前token的embedding(1次显存访问)
    x = embedding[token]

    # 逐层处理(每层需要访问KV Cache)
    for layer in layers:
        # 从HBM读取该层的KV Cache(2次显存访问)
        k_cache = load_from_hbm(layer.k_cache)
        v_cache = load_from_hbm(layer.v_cache)

        # 计算新的k,v并更新缓存(2次显存写入)
        new_k = x @ W_k
        new_v = x @ W_v
        k_cache.append(new_k)
        v_cache.append(new_v)

        # 注意力计算(需要读取整个k_cache和v_cache)
        attn_output = attention(q, k_cache, v_cache)

    # 写入新生成的token(1次显存访问)
    output_sequence.append(next_token)
深入解析:
  • 自回归特性导致的访存压力:
    Decode阶段是自回归的,这意味着每个token的生成都依赖于之前生成的token。因此,需要频繁地读取和更新KV Cache,这导致了大量的显存访问。随着生成token的数量增加,KV Cache也会越来越大,导致更多的访存压力。
  • KV Cache的重复读取:
    在decode阶段,每一层都会重复读取全部的KV Cache,这是导致访存瓶颈的主要原因。
关键指标对比:
阶段计算量(FLOPs)显存访问量并行度
PrefillO(N²d)O(Nd)
DecodeO(Nd)O(N²d)

二、PD分离的硬件级优化

2.1 异构计算架构设计

Prefill节点的典型配置:
  • NVIDIA H100 GPU(FP8 Tensor Core)
  • 内存带宽:3TB/s
  • 算力:989 TFLOPS
  • 优化目标:最大化SM(流式多处理器)利用率
Decode节点的特殊设计:
  • 定制化推理卡(如Groq LPU)
  • 内存带宽:5TB/s(HBM3E)
  • 片上SRAM:230MB(减少HBM访问)
  • 优化目标:降低访存延迟
深入解析:
  • 硬件差异化的本质:
    PD分离的核心在于利用不同硬件在计算和访存上的优势。Prefill阶段需要强大的计算能力,而Decode阶段更需要高带宽的内存。
    PD分离部署的核心在于将LLM推理过程解耦为两个在资源需求和执行特点上显著不同的阶段,并针对性地进行优化:
  • 逻辑上的流水线 (Pipeline Stages):
    PD分离将推理过程视为一个两阶段的流水线。一个推理请求首先进入Prefill阶段,然后将Prefill阶段的输出作为Decode阶段的输入。
  • 数据流转 (Data Flow):
    • Prefill阶段:接收用户的prompt(token序列),模型对整个prompt进行并行计算,生成每个token的embedding和attention信息,并构建关键的上下文状态,即KV Cache。Prefill阶段的输出主要是这个KV Cache。
    • Decode阶段:接收Prefill阶段生成的KV Cache,以及当前已生成的token序列(初始为空)。模型根据KV Cache和已生成的token预测下一个token的概率分布,并从中采样生成下一个token。然后,将新生成的token加入到序列中,并更新KV Cache,重复这个过程直到生成完整的回复或达到预设的停止条件。
  • 资源隔离与定制 (Resource Isolation and Customization):
    • Prefill节点:通常部署在具有强大计算能力的硬件上(例如,配备大量高性能GPU),因为 Prefill阶段需要大量的并行计算。
    • Decode节点:通常部署在具有较大内存容量和高内存带宽的硬件上,因为Decode阶段需要频繁地读写和更新KV Cache。
  • 状态管理 (State Management):
    Prefill阶段生成的KV Cache是Decode阶段的关键状态。在分离部署中,需要有效地将KV Cache从Prefill节点传递到Decode节点。对于并发推理,可能需要管理多个请求的KV Cache。
  • 任务调度与协调 (Task Scheduling and Coordination):
    需要一个系统来协调和调度Prefill和Decode阶段的任务。例如,当一个请求完成Prefill后,需要将其KV Cache路由到可用的Decode节点进行后续的生成。
  • 通信机制 (Communication Mechanism):
    Prefill节点和Decode节点之间需要高效的通信机制来传输KV Cache和其他控制信息。这在分布式部署中尤其重要。

三、EP分离与门控网络的深度协同

3.1 MoE架构的运行时解析

专家并行执行流程:
# 假设有8个专家分布在2个GPU上
def moe_layer(x):
    # 门控网络计算(GPU0)
    gates = gating_network(x)  # [batch, num_experts]

    # 专家路由(跨设备通信)
    selected_experts = topk(gates, k=2)
    x_shards = alltoall(x, selected_experts)  # 跨设备传输

    # 专家计算(分布式执行)
    expert_outputs = []
    for expert_id in selected_experts:
        device = expert_id // 4  # 每个GPU存放4个专家
        with device(device):
            out = experts[expert_id](x_shards[expert_id])
            expert_outputs.append(out)

    # 结果聚合(跨设备规约)
    combined = allreduce(expert_outputs)
    return combined * gates  # 门控加权
深入解析:
  • EP作用于Decode阶段的专家网络:
    EP(专家并行)主要应用于Decode阶段的专家网络。在MoE模型中,Decode阶段的FFN层被拆分为多个“专家”模块。EP通过将这些专家模块分配到不同的硬件设备上,实现并行计算,加速推理过程。
  • 门控网络的本质:
    门控网络的作用是根据输入数据的特征,动态地选择激活哪些专家。门控网络的输出,本质上就是对于多个专家的一个概率分布。
  • 专家路由的挑战:
    EP分离的核心挑战在于如何高效地进行专家路由,即将输入数据分配给不同的专家。All to all的通信,是专家路由中的主要通信方式。
  • 专家并行的优势:
    通过将不同的专家分配到不同的硬件设备上,可以实现并行计算,加速推理过程。
什么是Expert Parallelism (EP)?

在拥有Mixture of Experts (MoE) 架构的大型语言模型中,模型包含多个“专家”子网络。Expert Parallelism 是一种将这些不同的专家子网络分布到多个计算设备(例如GPU)上的并行计算技术。

  • 每个计算设备负责存储和运行模型中一部分的专家。
  • 当输入数据进入模型时,一个“门控网络”(gating network)会决定将哪些输入路由到哪些专家进行处理。
  • 只有被选中的专家会对特定的输入进行计算,最终它们的输出会被合并以产生最终结果。
  • 这种方法允许模型拥有非常庞大的参数量(因为有很多专家),但对于每个单独的输入,只有一小部分参数是激活的,从而在一定程度上控制了计算成本。
EP与PD分离的关系:
  • Expert Parallelism 和 PD 分离是两种不同的、但可以互补的优化策略,它们关注推理过程的不同方面:
    • 关注点不同:
      • PD分离 (Prefill/Decode Separation) 主要关注推理流程的两个主要阶段,并针对它们不同的资源需求进行优化部署,将计算密集型的Prefill阶段和访存密集型的Decode阶段分开处理。
      • EP (Expert Parallelism) 主要关注模型内部的并行化,特别是针对MoE架构,通过将模型中的不同专家分布到多个设备上,实现模型参数的并行处理和存储。
    • 解决的问题不同:
      • PD分离 主要解决的是Prefill和Decode阶段的资源竞争问题,提高整体的吞吐量和降低延迟。
      • EP 主要解决的是MoE模型参数量过大,单个设备可能无法存储或高效计算的问题,通过分布式计算来扩展模型容量。
    • 联系与协同:
      • 在一个使用MoE架构的LLM推理系统中,可以同时采用EP和PD分离策略。
      • 例如,在Decode阶段,模型需要访问KV Cache并进行后续的token生成。如果模型采用了EP,那么Decode阶段的不同专家可能分布在不同的设备上,需要通过网络进行通信。PD分离可以将Decode阶段整体部署在特定的节点上,而这些节点内部又可以通过EP来并行计算不同的专家。
      • 在Prefill阶段,如果模型是MoE的,那么Prefill过程也需要涉及到专家的计算,同样可以利用EP将这些计算分布到多个设备上。
    • 总结来说:
      • PD分离 是从推理流程的宏观阶段来优化资源分配和并行执行。
      • EP 是从模型内部的微观结构(特别是MoE模型中的专家)来实现参数和计算的并行化。
      • 它们可以结合使用,共同提升基于MoE架构的LLM的推理性能和可扩展性。例如,一个推理集群可以采用PD分离,将Prefill和Decode部署在不同的节点组上,而在执行Decode阶段时,如果模型是MoE的,那么每个Decode节点组内部又可以通过Expert Parallelism来并行处理不同的模型专家。

3.2 门控网络的硬件优化

动态路由的三种实现方式:
  1. 软件路由(Baseline)
    • 在CPU上执行门控计算,产生3-5ms额外延迟
  2. 硬件加速(NVIDIA MaaS方案)
    • 使用GPU上的TensorRT插件实现路由,延迟降至0.2ms
  3. 专用路由单元(Groq方案)
    • 在LPU中集成路由协处理器,延迟<0.05ms
路由算法演进:
# 传统softmax门控
gates = softmax(x @ W_g)

# 最新研究成果(DeepSeek-V2)
sparse_gates = entmax(x @ W_g)  # 产生更稀疏的专家选择
load_balance_loss = CV(gates)  # 控制专家负载均衡
深入解析:
  • 硬件加速的必要性:
    门控网络的计算和专家路由的通信,会产生额外的延迟。因此,需要使用硬件加速来降低这些延迟。
  • 稀疏门控的优势:
    稀疏门控可以减少激活的专家数量,从而降低计算和通信开销。负载均衡损失,能够有效地控制专家的使用频率。
门控网络(Gating Network)是什么,一个层么?详细介绍一下找到对应专家的大致过程
  • 门控网络的概念:
    门控网络是MoE模型的核心组件,它负责根据输入token的特征,动态选择激活哪些专家。
    门控网络通常是一个小型神经网络,它可以是一个或多个全连接层(FFN)。
  • 找到对应专家的大致过程:
    1. 输入token的特征向量被输入到门控网络中。
    2. 门控网络输出一个或多个权重向量,每个权重向量对应一个专家。
    3. 权重向量中的每个元素表示对应专家的激活程度。
    4. 模型根据权重向量,选择激活一个或多个权重最高的专家。
    5. 被激活的专家处理输入token,并将它们的输出进行加权融合,得到最终的输出。
能详细介绍一下FFN层么?本质上为什么会在这层激活专家呢?如何找到对应的专家?
  • FFN层:
    • FFN层(Feed-Forward Network)是Transformer模型中的一个重要组件,它由两个或多个全连接层组成,用于对输入特征进行非线性变换。
    • FFN层的作用是增强模型的表达能力,使其能够学习更复杂的特征表示。
  • 在FFN层激活专家:
    • 在MoE模型中,FFN层被拆分为多个“专家”模块,每个专家都是一个独立的FFN层。
    • 这样做的好处是,可以让模型根据不同的输入数据,选择激活不同的专家,从而提高模型的性能。
    • 本质上来说,FFN层是模型中参数量最大的层,也是模型中最具有特征提取能力的层,将FFN层进行专家化,能够有效提高模型的性能。
  • 如何找到对应的专家:
    • 通过门控网络,门控网络会根据输入token的特征,输出每个专家的权重。
    • 根据权重的大小,来选择对应的专家。
专家权重是动态计算的,而不是预先计算好的
  • 动态计算:
    • 门控网络的作用是根据当前的输入token的特征,动态地计算每个专家的权重。
    • 这意味着,对于不同的输入token,门控网络会产生不同的权重分布。
    • 这种动态性是MoE模型的核心优势之一,它允许模型根据输入数据的不同,灵活地选择最合适的专家进行处理。
  • 计算过程:
    • 当一个输入token被送入MoE模型时,它的特征向量会被传递给门控网络。
    • 门控网络通过一系列的计算(通常是全连接层和激活函数),输出一个表示每个专家权重的向量。
    • 这个权重向量中的每个元素,代表了对应专家应该被激活的程度。
    • 因此,每次输入一个新的token,门控网络都会重新进行计算,生成新的专家权重。
  • 原因:
    • 模型需要根据不同的输入,选择不同的专家。如果权重是预先计算好的,那么模型就失去了动态调整的能力,无法适应不同的输入模式。
  • 总结:
    • 门控网络会根据当前输入token的特征,动态计算每个专家的权重。
    • 这种动态的计算,是MoE模型的核心,也是MoE模型能够提高模型表现的原因。
门控网络有些类似分类网络
  • 门控网络与分类的相似性:
    • 目标:两者都涉及将输入数据分配到不同的“类别”。在门控网络中,“类别”就是不同的专家。两者都使用类似的数学工具,例如Softmax函数,将输出转换为概率分布。
    • 机制:门控网络通常使用全连接层,这也是分类网络中常用的结构。门控网络的输出可以被视为输入数据属于每个专家的“概率”。
  • 门控网络与分类的差异性:
    • 应用场景:分类任务通常用于将数据分配到预定义的类别,例如图像分类或文本分类。门控网络用于MoE模型中,用于动态选择激活哪些专家来处理输入数据。
    • 目标的弹性:分类任务通常是“硬性”的,即每个输入数据必须被分配到一个明确的类别。门控网络则更加“软性”,它允许模型根据输入数据的特征,对不同的专家进行加权,甚至同时激活多个专家。
  • 本质:
    • 分类网络,着重于将输入数据进行明确的分类。
    • 门控网络,着重于根据输入数据,来选择最适合处理该数据的专家。
  • 总结:
    • 门控网络可以被视为一种特殊的分类任务,其目标是根据输入数据的特征,选择最适合处理该数据的专家。
    • 然而,门控网络与传统分类任务之间存在一些关键差异,例如应用场景和目标的弹性。
    • 因此,虽然门控网络在某些方面与分类任务相似,但它们并非完全相同。它们是为了实现MoE模型中的动态专家选择而设计的。

四、PD与EP的联合优化实践

4.1 资源分配策略:混合部署架构

                  [Load Balancer]
                 /                \
      Prefill Cluster           Decode Cluster
      (H100 x4)           (LPU x8 + EP组)
                                /       \
                      文本专家组    多模态专家组
                      (LPU0-3)      (LPU4-7)
深入解析:
  • 资源差异化分配:
    • PD与EP的联合优化,核心在于根据Prefill和Decode阶段的计算和访存需求,以及专家网络的特性,对硬件资源进行差异化分配。
    • Prefill集群使用擅长计算的GPU,而Decode集群则使用擅长访存的推理卡,并结合EP技术,将专家网络分配到多个推理卡上。
  • 负载均衡:
    • Load Balancer负责将用户请求合理分配到Prefill和Decode集群,确保各个硬件资源的充分利用。
  • 多模态支持:
    • 通过将不同模态的专家分配到不同的专家组,可以实现多模态的支持。

4.2 通信优化关键技术:KV Cache的压缩传输

# Prefill节点生成KV Cache后:
compressed_kv = FP8_quantize(kv_cache)  # 4:1压缩比
encrypted_data = AES_gcm_encrypt(compressed_kv)

# Decode节点接收时:
decrypted = AES_gcm_decrypt(encrypted_data)
kv_cache = FP8_dequantize(decrypted)
深入解析:
  • 压缩传输的必要性:
    • Prefill和Decode集群之间需要传输大量的KV Cache。通过压缩KV Cache,可以减少传输的数据量,从而降低通信延迟。
  • RDMA网络:
    • 结合RDMA网络,可以实现低延迟的跨集群通信。

4.3 关键突破:专家负载预测、门控网络协同、跨集群调度

  • 专家负载预测:
    通过预测专家的负载情况,可以实现更精细的资源分配和调度。
  • 门控网络协同:
    将门控网络的设计与硬件特性相结合,可以进一步提高路由效率。
  • 跨集群调度:
    通过优化跨集群的流水线调度,可以减少整体的推理延迟。

五、技术演进与开发者建议

5.1 前沿研究方向

  1. 动态PD调度
    根据请求特征自动分配Prefill/Decode资源
  2. 3D混合并行
    在EP基础上结合Tensor/Pipeline并行
  3. 存算一体架构
    • 使用HBM直接处理KV Cache

六、总结

大模型推理优化的三个维度:
  1. 时间维度:解耦Prefill/Decode实现流水线并行
  2. 空间维度:通过EP实现计算资源的空间划分
  3. 硬件维度:针对不同计算模式定制加速单元

原文地址: https://www.cnblogs.com/menkeyi/p/18778750

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静谧之心

感谢您的鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值