【LeetCode】766. Toeplitz Matrix(Toeplitz矩阵)

【LeetCode】766. Toeplitz Matrix(Toeplitz矩阵)


问题描述:

A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element.

Now given an M x N matrix, return True if and only if the matrix is Toeplitz.
 

Example 1:

Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
Output: True
Explanation:
1234
5123
9512

In the above grid, the diagonals are "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]", and in each diagonal all elements are the same, so the answer is True.

Example 2:

Input: matrix = [[1,2],[2,2]]
Output: False
Explanation:
The diagonal "[1, 2]" has different elements.

Note:

  1. matrix will be a 2D array of integers.
  2. matrix will have a number of rows and columns in range [1, 20].
  3. matrix[i][j] will be integers in range [0, 99].
解释:意思就是给一个二维矩阵,判断矩阵的每一条对角线上的数是否相等,相等返回true,是 Toeplitz矩阵;不是返回false。

思路:对角线上相邻的两个数必须相等才可以是Toeplitz矩阵,那么,就可以遍历这个矩阵,判断两个对角线相邻的数是否不相等,如果不相等,那么他一定就不是Toeplitz矩阵。如果矩阵都满足梁林对角线相等,那么该矩阵就为Toeplitz矩阵。

java 代码:
class Solution {
    public boolean isToeplitzMatrix(int[][] matrix) {
        int m=matrix.length;
        int n=matrix[0].length;
        for(int i=0;i<m-1;i++) //此处为m-1,n-1的原因是倒数第二个元素就已经判断了是否与下一个元素相等
        {
            for(int j=0;j<n-1;j++) //即m-2(倒数第二个)是否等于m-1(最后一个)
            {
                if(matrix[i][j]!=matrix[i+1][j+1])
                    return false;
            }
        }
        return true;
    }
}


日期:2018/2/7-12:23
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值