Toeplitz 矩阵

简介

托普利兹矩阵,简称为T型矩阵,它是由Bryc、Dembo、Jiang于2006年提出的。托普利兹矩阵的主对角线上的元素相等,平行于主对角线的线上的元素也相等;矩阵中的各元素关于次对角线对称,即T型矩阵为次对称矩阵。简单的T形矩阵包括前向位移矩阵和后向位移矩阵。在数学软件Matlab中,生成托普利兹矩阵的函数是:toeplitz(x,y)。它生成一个以 x 为第一列,y 为第一行的托普利兹矩阵,这里x, y均为向量,两者不必等长。

由左边的 Toeplize 矩阵可知,Toeplize 矩阵不必是方阵;下面来看该矩阵的维度信息,如下图所示:
这里写图片描述

代码:

Python

class Solution(object):
    def isToeplitzMatrix(self, matrix):

        #右上三角形
        for j in range(0, len(matrix[0])):
            temp = matrix[0][j]
            x = 0
            y = j
            while x<len(matrix) and y<len(matrix[0]):
                if matrix[x][y]!=temp:
                    return False
                x = x + 1
                y = y + 1

        #左下三角形
        for i in range(0, len(matrix)):
            temp = matrix[i][0]
            x = i
            y = 0
            while x<len(matrix) and y<len(matrix[0]):
                if matrix[x][y]!=temp:
                    return False 
                x = x + 1
                y = y + 1

        return True

C++

class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>>& matrix) {
        //右上三角形
        int temp,x,y;
        for(int j=0; j<matrix[0].size(); j++)
        {   temp = matrix[0][j];
            x = 0;
            y = j;
            while(x<matrix.size() && y<matrix[0].size())
            {
                if(matrix[x++][y++]!=temp)
                    return false;
            }    
        }
        //左下三角形
        for(int i=0; i<matrix.size(); i++)
        {
            temp = matrix[i][0];
            x = i;
            y = 0;
            while(x<matrix.size() && y<matrix[0].size())
            {
                if(matrix[x++][y++]!=temp)
                    return false;
            }    
        }
        return true;
    }
};

有用的链接:

https://blog.csdn.net/anan1205/article/details/

https://blog.csdn.net/Andrewseu/article/details/51783181

https://blog.csdn.net/xiamentingtao/article/details/52910263

https://blog.csdn.net/bluecol/article/details/47451825

https://blog.csdn.net/qq_23947237/article/details/84591292

### Toeplitz矩阵的定义 Toeplitz矩阵是一种特殊的方阵,其中每条左上到右下的斜线上元素相同。对于一个 \( n \times n \) 的 Toeplitz 矩阵 \( T \),其一般形式可以表示为: \[ T = \begin{bmatrix} t_0 & t_{-1} & t_{-2} & \cdots & t_{-(n-1)} \\ t_1 & t_0 & t_{-1} & \cdots & t_{-(n-2)} \\ t_2 & t_1 & t_0 & \cdots & t_{-(n-3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t_{n-1} & t_{n-2} & t_{n-3} & \cdots & t_0 \end{bmatrix} \] 这种结构使得 Toeplitz 矩阵具有独特的性质,在许多领域有广泛应用。 ### Toeplitz矩阵的主要特性 #### 对角恒定性 每个对角线上的元素都相等。这意味着如果知道第一列和第一行的数据,则整个矩阵就可以唯一确定[^1]。 #### 存储效率高 由于只需要存储第一行和第一列的信息即可重建整个矩阵,因此相比于一般的稠密矩阵Toeplitz 矩阵所需的内存空间更少。 #### 计算复杂度低 利用快速傅里叶变换 (FFT),可以在 O(n log n) 时间内完成两个长度为 n 的向量之间的循环卷积运算,这同样适用于某些类型的 Toeplitz 系统求解问题。 ### Toeplitz矩阵的应用场景 #### 信号处理 在数字滤波器设计中经常遇到 Toeplitz 结构的自相关矩阵;另外,在时间序列分析里也常常用到这类特殊形状的数据表征方法来简化计算过程。 #### 图像处理 当涉及到二维离散傅立叶变换时,会出现分块 Toeplitz 形式的系数矩阵,这对于加速图像压缩编码算法非常重要。 ```python import numpy as np from scipy.linalg import toeplitz c = [1, 2, 3, 4] # First column of the matrix r = [1, 5, 6, 7] # First row of the matrix except first element which is same as c[0] T = toeplitz(c, r) print(T) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值