DNN语音增强实现

  1. 获取干净语音及噪声语音数据,可以使用 s o u n d f i l e soundfile soundfile 中的 r e a d read read 函数;

    • 获取语音有些困难,因为语音数据庞大,因此需要调整获取语音数据的方式;
    • 已知:(1)语音数据:包括 s p e e c h speech speech n o i s e noise noise(训练数据、验证数据及测试数据未分类);(2)训练数据文本文档、验证数据文本文档、测试数据文本文档;
    • 根据已知创建所需分类数据。
    • 具体实现见链接
  2. 处理语音数据,主要是因为噪声和干净语音的长度不一致,而对干净语音加噪时,需要保证噪声和干净语音的长度一致,以防数据处理时,数组不一致,因此需要选取与干净语音长度一致的噪声(随机选取);

    • 根据论文中所述,实验过程中使用了五种噪声( b a b b l e . w a v babble.wav babble.wav , e n g i n e . w a v engine.wav engine.wav , f a c t o r y . w a v factory.wav factory.wav , o p . w a v op.wav op.wav , s s n . w a v ssn.wav ssn.wav )用于训练,七种噪声( b a b b l e . w a v babble.wav babble.wav , e n g i n e . w a v engine.wav engine.wav , f a c t o r y . w a v factory.wav factory.wav , o p . w a v op.wav op.wav , s s n . w a v ssn.wav ssn.wav, b u c c a n e e r 1. w a v buccaneer1.wav buccaneer1.wav , f a c t o r y 2. w a v factory2.wav factory2.wav , )用于测试,但是为了为了避免早上重复,需要将噪声分段,前半部分用于训练,后半部分用于测试,噪声的分段操作见链接。(其中, c u t N o i s e ( ) cutNoise() cutNoise() 函数为对噪声的分段操作)
  3. 按一定信噪比将干净语音和噪声混合,以获取加噪语音;见链接

  4. 提取频谱特征( S T F T STFT STFT M F C C MFCC MFCC等,选其一,可根据不同的方法提取不同的特征以提高降噪效果);见链接

  5. 降噪:采取不同的降噪方法,如 I R M IRM IRM I B M IBM IBM c I R M cIRM cIRM等;(待完成)

  6. 合成降噪后的语音,与干净语音对比,分析降噪效果;(待完成)

  7. 后续就是要加网络训练。(待完成)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值