数据分析的结构层次

本文探讨了数据分析的结构层次,从底层数据收集到数据战略的建立。首先介绍数据采集和埋点,接着讨论如何将原始数据转化为业务指标并进行可视化。然后,讲述了数据如何驱动决策和产品改进,并构建数据模型实现自动化运营。最后,强调了积累数据资产以形成数据战略,指导企业的未来发展。涉及到的关键技术包括ETL、数据仓库、CRM和商务智能。
摘要由CSDN通过智能技术生成

底层数据的收集/产品端的收集

数据采集简称埋点,收集用户在网页端、产品端、客户端等终端的数据,也包括第三方外部数据。
用户行为——原始数据

数据业务化/产品需要什么样的数据

将收集的数据转换成可理解、可量化、可观察的业务指标。单纯的数据没有意义。只有和业务结合才能发挥价值。
原始数据——加工数据

数据可视化/产品的表现如何?

有了数据指标,必须管理好指标。数据分析体系即数据指标体系,指标需要监控和衡量。
加工数据——可视化数据/信息

数据的决策和执行/怎么让产品更好

当从数据中获得 了洞察,就需要把洞察转换成策略。这也是包含分析的过程。执行既包含策略的制定,也包括优化和改进。这是持续的。
可视化数据/信息——数据决策

数据模型/产品开始自动化和系统化的运营

这是将策略制成数据应用和产品,当年洞察到数据中蕴含的规律,什么样的用户喜欢,什么样的商品会被购买,什么样的活动形式更好,就尝试把这些做成系统。
数据决策——数据产品/应用

数据战略/指导未来

当积累了大量的数据,大量的规模,大量的数据应用时,公司的数据体系已经具备雏形,它不只是数据分析,而是应该将数据变现。
数据工具——数据体系/战略


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值