Description:
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
Solution:
int numTrees(int n) {
int dp[n+1];
dp[0] = dp[1] = 1;
for (int i=2; i<=n; i++) {
dp[i] = 0;
for (int j=1; j<=i; j++) {
dp[i] += dp[j-1] * dp[i-j];
}
}
return dp[n];
}