给你一个整数数组 nums ,请计算数组的 中心下标 。
数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。
如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。
如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1 。
示例 1:
输入:nums = [1, 7, 3, 6, 5, 6]
输出:3
解释:
中心下标是 3 。
左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 ,
右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。
示例 2:
输入:nums = [1, 2, 3]
输出:-1
解释:
数组中不存在满足此条件的中心下标。
示例 3:
输入:nums = [2, 1, -1]
输出:0
解释:
中心下标是 0 。
左侧数之和 sum = 0 ,(下标 0 左侧不存在元素),
右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。
提示:
1 <= nums.length <= 104
-1000 <= nums[i] <= 1000
思路:
定义 preSum 为数组 nums 的前缀和,preSum[ i ] = nums[ 0 ] + ... + nums[ i ]
得到 前缀和数组后,遍历 preSum 数组,返回以 下标 i 的左侧数与右侧数之和相等时的下标
c++
class Solution {
public:
int pivotIndex(vector<int>& nums) {
vector<int> preSum(nums.size(), 0);
vector<int> tarMap;
for(int i=0; i<nums.size(); i++) {
if( i== 0) {
preSum[i] = nums[i];
} else {
preSum[i] = nums[i] + preSum[i-1];
}
}
int result = -1;
for(int i=0; i<nums.size(); i++) {
if(i == 0) {
if(preSum[nums.size()-1] - preSum[0] == 0) {
result = 0;
break;
}
} else if(i == nums.size()-1) {
if(preSum[nums.size()-2] == 0) {
result = nums.size()-1;
break;
}
} else {
if(preSum[i-1] == preSum[nums.size()-1]-preSum[i]) {
result = i;
break;
}
}
}
return result;
}
};