python - dtype

NumPy数组类型转换实战
本文介绍了如何使用Python的NumPy库进行数组元素类型的查看与转换。通过实例演示了使用dtype属性查看数组当前元素类型的方法,以及利用astype函数将数组元素类型更改为float或int64的具体操作。

dtype 查看数组元素类型
astype 改变数组元素类型

import math
import numpy as np
import pandas as pd

A = np.array(pd.DataFrame(np.arange(16).reshape(4,4)))
print(A)

print(A.dtype)

print(A.astype(np.float)) 
print(A.astype(np.int64)) 

out:
在这里插入图片描述

### Python PCL 1.8 Installation and Usage For installing Python-PCL version 1.8, several steps need to be followed carefully considering dependencies and environment configurations. #### Prerequisites Before proceeding with the installation of Python-PCL, ensure that Point Cloud Library (PCL) is installed on your system along with its development files. This can typically be done using package managers like `apt` for Ubuntu-based systems: ```bash sudo apt-get update sudo apt-get install libpcl-dev pcl-tools ``` Additionally, having a working C++ compiler such as GCC or Clang is necessary since some parts of PCL are written in C++. For Python integration, make sure pip is up-to-date: ```bash pip install --upgrade pip setuptools wheel ``` #### Installing Python-PCL via Source Code Since direct binary packages might not always exist for specific versions including 1.8, building from source may become essential. Begin by cloning the repository associated with Python bindings for PCL: ```bash git clone https://github.com/strawlab/python-pcl.git cd python-pcl/ ``` Ensure compatibility between the cloned branch/tag and desired PCL library version before continuing. Compilation requires setting certain environmental variables pointing towards local installations of PCL libraries: ```bash export PCL_DIR=/usr/local/share/pcl-<version>/ # Adjust path accordingly python setup.py build_ext --inplace ``` After successful compilation, proceed with installation through pip within this directory: ```bash pip install . ``` Alternatively, pre-built wheels could sometimes simplify this process but availability depends heavily upon community contributions which vary across platforms and architectures[^1]. #### Basic Example Using Python-PCL Once properly set up, here’s how one would load point cloud data into memory using NumPy arrays alongside basic operations provided by Python-PCL: ```python import numpy as np import pcl.pcl_visualization from pcl import * cloud = pcl.PointCloud() points = np.array([[0., 0., 0.], [1., 0., 0.]], dtype=np.float32) cloud.from_array(points) visual = pcl.pcl_visualization.CloudViewing() visual.ShowMonochromeColor() while True: visual.ShowGrayImage(cloud) ``` This script initializes an empty point cloud object then populates it with two points represented as rows inside a floating-point array. Visualization tools allow interactive exploration although more advanced features require deeper dives into documentation. --related questions-- 1. What alternatives exist when facing difficulties compiling Python-PCL? 2. How does integrating ROS affect workflows involving Python-PCL applications? 3. Can you provide examples demonstrating segmentation techniques available under Python-PCL? 4. Are there any known issues running Python-PCL on non-Linux operating systems?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值